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Abstract

We study, in finite volume, a grand canonical version of the McKean–Vlasov equa-

tion where the total particle content is allowed to vary. The dynamics is anticipated

to minimize an appropriate grand canonical free energy; we make this notion precise

by introducing a metric on a set of positive Borel measures without pre–prescribed

mass and demonstrating that the dynamics is a gradient flow with respect to this met-

ric. Moreover, we develop a JKO–type scheme suitable for these problems. The latter

ideas have general applicability to a class of second order non–conservative problems.

For this particular system we prove, using the JKO–type scheme, that under certain

conditions – not too far from optimal – convergence to the uniform stationary state is

exponential with a rate which is independent of the volume. By contrast, in related

conservative systems, decay rates scale (at best) with the square of the characteristic

length of the system. This suggests that a grand canonical approach may be useful for

both theoretical and computational study of large scale systems.

0AMS subject classifications: 35A99; 49Q99; 70F45; 76R99.
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1 Introduction

This paper concerns the evolution and the convergence to equilibrium for a certain class

of non–linear diffusion equations which may vaguely be described as of the McKean–

Vlasov or Keller–Segel type. Such systems have been well studied in recent years; here

the primary distinction will be that the total mass is not conserved locally in time

but, rather, is globally determined by the analogue of a Lagrange multiplier which

is known as the chemical potential (see e.g., [2], page 129). Secondly, we work in fi-

nite volume. This setting is arguably (see [5]) the physically sensible approach to the

mathematical study of approximately homogeneous fluids described by these dynam-

ics. Extensive behavior – static or dynamic – can only emerge as the infinite volume

limit of finite systems where the total mass scales with the volume. In this context, the

non–conservative setup (aka grand canonical) has distinct advantages over its conser-

vative (aka canonical) counterpart. Indeed, as is quite well known (see, e.g., [5]) the

latter generically has relaxation times which scale with a power of the characteristic

length of the system. Here (under some lenient conditions on the initial data and pa-

rameter values) we demonstrate an exponential convergence to equilibrium with a rate

that is uniform in the volume. Moreover, this will be proved under conditions where

the driving functional relevant to the problem does not necessarily enjoy convexity

properties3.

3These results should be contrasted with several notable earlier works e.g., [4] which treat systems in a

priori infinite volume and obtain exponential convergence to equilibrium with a rate which – necessarily – is

uniform in volume. The aforementioned pertain to conservative systems with finite mass; in the absence of

external constraints all mass would eventually drift away. So, in these works, mass is confined by an external

potential which render the setting to an effectively finite–volume problem. Moreover, the curvature of the
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Our proofs of these assertions – precise statements will be presented at the close

of this section – require the parallel development of a theory of optimal transport for

non–conservative systems. In particular, as will be outlined in Section 2 below, this

necessitates the construction of a distance between positive L2–functions (which, with

additional labor, might be extended to general Borel measures). And, associated with

this distance and dynamics – as presented in Section 2 – will be a JKO–type scheme

[13], which constitutes the core of the proof.

Here it is remarked that, since the start of this research, there has been a parallel

development of some of these ideas in [19], [16] and [6] (also see [18] and references

therein) in the context of reaction diffusion equations. However, for us, the construction

of a framework is only the preliminary step: Our efforts culminate in tangible results

for the system which will be described in Eq.(8). Moreover, while our focus here is

on a particular equation, the methodologies we develop can certainly be applied to a

variety of similar systems.

On a more practical note, it is emphasized that while the equation we will study is

akin to a reaction diffusion system, the results we have obtained will not apply to actual

reaction diffusion systems which, ultimately, are conservative. In particular, unless the

overall density is already homogeneous, equilibrium times in reaction diffusion systems

will be dominated by diffusive modes which necessitates that the relaxation times scale

with the square of the characteristic length of the system. However, in the grand

confining potential provides uniform convexity which drives the exponential convergence. Scaling (or linear

response theory) immediately shows that the actual rate of convergence is the curvature itself which, in turn,

is the square of the effective length–scale of the system. The curvature dependence of the rate is explicit in

the statement of Theorem 2.1 in [4] (c.f. equation (2.8)).
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canonical (hence non–conservative) versions of these reaction diffusion systems it is

anticipated that the convergence rates for uniform equilibria will be independent of

the volume; similar considerations apply for the types of problems treated in e.g., [4].

At this stage we must underscore some æsthetic limitations: While in conservative

cases, the JKO schemes necessarily pertain to the dynamic, the underlying distance

involved, usually the Wasserstein distance, is “universal” depending e.g., only on the

ambient space. In the current cases, as will become clear, what emerges is that the

distance itself evidently depends on the particulars of the dynamical equation. (A

somewhat analogous situation – in mass conserved cases – was considered in [9].) Nev-

ertheless we remark that even without the JKO scheme, the grand canonical approach

to this general set of problems may have distinctive advantages over the canonical ver-

sions. In this regard, it should be noted that for the problems studied here, for a.e. value

of the chemical potential, the steady state solutions of the two systems coincide. Thus,

while exponential convergence uniform in volume is not to be expected in the high

density phase, it is not too much to hope that in general the grand canonical systems

equilibrate in a reasonable computational time frame. The corresponding conservative

versions often appear to be computationally unviable.

The central focus of this paper concerns the analysis of an inhomogeneous version

of the McKean–Vlasov equation in which matter can effuse into and out of the system.

The usual conservative version can be derived in a variety of contexts; the original

rendition presumably dates back to [20]. The non–conservative version also admits

several derivations. For the purposes of this motivational section, we will provide, in

Subsection 1.2, a common (sketch of a) derivation based on familiar interacting particle

models. This has the distinct advantage that it connects directly to the thermodynamics
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(free energetics) which underlie these evolutions. The latter, which can always be

analyzed without recourse to dynamics, is the subject of Subsection 1.1 below. In the

forthcoming subsections, there will be no pretense to a complete mathematical analysis

(however, a full derivation may emerge in some future work).

1.1 Motivation

Consider a function N(x, t) obeying the McKean–Vlasov dynamic

∂N

∂t
= 4N +∇ · (N∇wN ) (1)

where

wN (x) :=

∫
TdL
W (x− y)N(y) dy.

It may be assumed without too much loss of generality that W (·) depends only

on the modulus of its argument. While a variety of ambient spaces are possible, for

simplicity here and throughout this work, we will use TdL, the d–dimensional torus of

side length L as indicated above. The L1–norm of N is preserved in time and with∫
TdL
Ndx =: ϑLd, this is precisely the problem studied in [5]. As is well known (e.g.,

this is discussed in [26], especially Ch. 8) Eq. (1) is a gradient flow with respect to the

Wasserstein distance for the (canonical) functional

Fϑ(N) :=

∫
TdL

(N logN −N) dx+
1

2

∫
TdL×T

d
L

W (x− y)N(x)N(y) dxdy.

In the context of minima for Fϑ and/or evolution according to Eq. (1) it is preferable

that W satisfy a condition known as H–stability which, in the present setup, reads that

for all m(x) with m(x) ≥ 0,

∫
TdL×T

d
L

W (x− y)m(x)m(y) dxdy ≥ 0.
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We take some time to recollect some results for the minimizers of Fϑ(·) all of which

are proved in [5] but some of which date back to an earlier epoch: See [15], [14], [10],

[11], [17], [12]. It is assumed throughout that W satisfies the H–stability condition. If

ϑ is sufficiently small, N ≡ ϑ is the unique minimizer. When W is of positive type,

implying convexity of Fϑ(·), this actually holds for all ϑ. Otherwise, the uniform state

becomes (linearly) unstable at ϑ = ϑ] which is given by the inverse of the maximum of

the absolute value of the negative Fourier modes of W . However, under fairly general

circumstances, the existence of non–uniform minimizers occurs at ϑ = ϑT < ϑ]; for

ϑ > ϑT , the uniform state is no longer a global minimizer.

The grand canonical generalization of Fϑ wherein the integral of N is not fixed is

given by

Gµ(N) :=

∫
TdL

(N logN − [N + µN ]) dx+
1

2

∫
TdL×T

d
L

W (x− y)N(x)N(y) dx dy (2)

where, as mentioned earlier, µ is called the chemical potential. Here it is seen that

the H–stability condition is, for all intents and purposes, essential. (It is also worth

noting that some of the older results alluded to above were actually established under

the jurisdiction of this grand canonical functional.) Let us summarize without proof

the essential results needed for the background of this work. For fixed µ, the set of

minimizers is non–empty. There are well defined upper and lower integrated densities

(total mass) associated with each µ both of which are realized by elements in this set.

These integrated densities are (both) strictly monotone and coincide for a.e. µ. If µ is

sufficiently small then the uniform state is the unique minimizer. The density in the

uniform state is given by m0 = m0(µ) and satisfies the equation

m0 = eµe−wm0 (3)
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with w =
∫
TdL
W (x)dx. It is noted that N ≡ m0 is always a stationary state for Gµ(·),

i.e., it satisfies the relevant Euler–Lagrange equation which is known in this context as

the Kirkwood–Monroe equation [15].

In particular, N ≡ m0 remains the global minimizer till a point of discontinuity µT

is reached where the upper and lower densities do not coincide and, in fact, bracket

ϑT . For values of µ greater than µT the uniform density is no longer the minimizer

and, at a strictly higher chemical potential, µ] – the value of µ such that m0 = ϑ] –

the uniform state becomes linearly unstable.

The implication is that the non–uniform minimizer for Fϑ(·) at ϑ = ϑT is non–

homogeneous and presumably cannot be understood without first understanding the

grand canonical version of the transition. Moreover, simulations of the canonical dy-

namics at ϑ ∼ ϑT may require unmanageable computational time scales till a non–

uniform minimizer is reached. See, e.g., [5] Theorem 2.11. But before such questions

can be addressed for the grand canonical problem, a dynamic must be presented which

corresponds to the functional Gµ(·). This is the topic of our next subsection.

1.2 Dynamics

While it is clear on general grounds that the “correct” equation for grand canonical

dynamics involves the augmentation of Eq. (1) by inhomogeneous terms, the form of

these terms is not particularly obvious. Moreover, the guiding principle is somewhat

nebulous: The physics dictates an “intrinsic uncertainty” in the particle content of

the system; i.e., there is a probability distribution for the number of particles. Here,

this translates into an intrinsic uncertainty in ‖N‖L1 . While these matters are well

understood in equilibrium, it is not so clear how this uncertainty is supposed to prop-
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agate dynamically. The answer lies in the stipulation that the (nebulous) physics of

this intrinsic uncertainty is equivalent, at the microscopic level, to the circumstances

where individual particles can appear and disappear according to (a) the energetics of

the complementary configuration and (b) a parameter, already mentioned, called the

chemical potential. In the remainder of this subsection we will provide motivation for

the form of the dynamics we wish to study, but this content is not essential to the

remainder of this work. The disinterested reader can proceed directly to Eq. (8).

Let us turn to a (brief and informal) discussion of the relevant lattice models both

in the context of equilibrium and dynamics. Since we have in mind a finite volume

problem in Rd, or on the torus, let A ⊆ Rd (or A = TdL) be some regular set and let

Aε denote the intersection of A with Zdε , the integer lattice of spacing ε. Letting V

denote the volume of A, the number of sites in Aε, denoted by |Aε|, is approximately

|Aε| ' ε−dV . We shall consider particle configurations X = (ηX(j) ∈ N | j ∈ Aε)

where here, N includes zero. Most of the discussion will concern the conservative case:

∑
j

ηX(j) ≡ n,

which is considered to be fixed. We concern ourselves with an informal discussion of

the ε → 0 limit with the scaling nεd → NV for some N > 0. The advantage of the

lattice discretization is that it enables the usage of particle systems to induce dynamics

in a straightforward fashion.

We re–emphasize that we make no claims to a rigorous derivation; we simply per-

form the analog of the calculations done in [23] for the Ising case wherein the Cahn–

Hilliard and Cahn–Allen equations were acquired. Explicitly, we expand terms and,

scaling time appropriately and neglecting correlations, we retain only the leading order

in ε. As we will see, the resultant equation for the particle density N at x ∈ A is
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given by ∂N
∂t = ∇2N+∇·(N∇wN ), i.e., exactly the McKean–Vlasov equation, Eq. (1).

Then, adding terms which allow the particle content to fluctuate, we shall arrive at the

dynamical equation we wish to study.

Let us now proceed with the discrete calculations. Starting with (non–interacting)

statics, we assign an a priori weight w(X) to each configuration X. Later this will

be augmented by an interaction expressed via a Hamiltonian. We choose, on a basis

which is not entirely physical, the weights

w(X) =

∏
j∈Aε

ηX(j)!

−1

. (4)

It is noted that ∑
X

w(X) =: Zε,n,V =
|Aε|n

n!
,

so that, automatically

lim
ε→0

1

|Aε|
logZε,n,V = N logN −N,

which is the free energy of an ideal gas.

Next, still in the context of a non–interacting system, let us introduce transition

rates TX:Y, the rate at which the system exhibits the configuration Y given that it is in

the configuration X. For simplicity we will always restrict attention to transitions which

only involve nearest neighbor jumps of a single particle: TX:Y = 0 unless ηY(k) = ηX(k)

for all k except a pair i, j with ‖i− j‖ = ε in which case

ηY(j) = ηX(j)± 1 while ηY(i) = ηX(i)∓ 1,

provided that this move keeps both ηY(j) and ηY(i) nonnegative. In other words, we

only allow transitions in which a single particle is transferred to a neighboring site.
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If Q(·) is a probability measure on the space of particle configurations the transition

rates TX:Y satisfy the condition of detailed balance with respect to Q if, for every

configuration X and Y

Q(X)TX:Y = Q(Y)TY:X .

When detailed balance is satisfied, the measure Q is invariant for the process. For the

weights in Eq. (4) it is clear that detailed balance is satisfied if the rate of transfer of a

particle from a given site to a neighboring site is equal (or proportional) to the number

of particles at the (given) site.

In this case we equivalently have n particles executing independent random walks.

In particular, the behavior is weakly diffusive in the sense that if Ωε is the generator

for this process, then

ΩεηX(k) =
∑

`:|`−k|=ε

ηX(`)− ηX(k) := (4εηX)(k). (5)

The right hand side, the discrete Laplacian, is weakly of order ε2. Since the left hand

side more or less corresponds to a time derivative, this necessitates that time be scaled

by ε2, i.e., diffusive scaling. We shall consider this a sufficient discussion of the non–

interacting case.

Let us now turn to the problem of interactions. In the context of classical equilib-

rium statistical mechanics, interactions are implemented by introducing a Hamiltonian

which is a real–valued function of the configurations that we denote by H(X). The

canonical equilibrium is defined as the probability measure on configurations which is

given by the weights w(X)e−H(X). As for dynamics, if T ′
X:Y

satisfies detailed balance

for the non–interacting cases, it is seen that if we define (regardless of the precise form
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of H) the rates

TX:Y = T ′
X:Y

e
1
2

[H(X)−H(Y)], (6)

then the resulting dynamics will satisfy detailed balance with respect to the canonical

measures. Here, we are interested in interactions which are of the mean–field type. For

r > 0, we let W (r) be a smooth function, then we may take the Hamiltonian to be

H(X) =
εd

2

∑
k,`

ηX(k)ηX(`)Wk,`

where Wk,` is standing notation for W (‖k − `‖). In the above, the customary factor

of n−1 has been replaced by εd and we also implement the convention that W (0) ≡ 0.

It is noted that with the pre–factor of εd, the interaction associated with a single site,

i.e., εdηX(`)
∑

k ηX(k)Wk,`, is of order unity whereas the total interaction is of order n

which is “extensive”.

Next we calculate the quantity 1
2 [H(X)−H(Y)] for the case where a particle has

transferred from a particular site i (where ηX(i) > 0) to a neighboring site j. I.e.,

ηY(i) = ηX(i)− 1, ηY(j) = ηX(j) + 1; ηY(k) = ηX(k), k 6= i, j.

(In the ensuing computations we will assume that i is an interior site.) The result of

the above described computation is

1

2
[H(X)−H(Y)] = −ε

d

2
Wi,j +

εd

2

∑
α

ηX(α)(Wi,α −Wj,α).

We will neglect the first term and denote the second term by 1
2 [AX(i)−AX(j)]. Thus,

for the site i, the rate of particle transfer from and to site j is given in the display

−ηX(i)e
1
2

[A
X

(i)−A
X

(j)] + ηX(j)e−
1
2

[A
X

(i)−A
X

(j)],

where the second term is calculated by interchanging i and j.
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We may expand these exponents, realizing that the differences AX(i) − AX(j) are

themselves of order ε. The preceding display then reads

−ηX(i)

(
1 +

1

2
[AX(i)−AX(j)] +

1

2

(
1

2
[AX(i)−AX(j)]

)2

+ . . .

)

+ ηX(j)

(
1− 1

2
[AX(i)−AX(j)] +

1

2

(
1

2
[AX(i)−AX(j)]

)2

+ . . .

)
.

Now we claim that all but the first 2 terms in each of the expansions can be neglected.

Indeed, diffusive scaling indicates that we only need to retain to order ε2. The terms

not written are a priori at least of order ε3 and higher. As for the third terms in the

preceding display: The presence of [AX(i) − AX(j)]2 is already of order ε2 but then

they combine to yield the pre–factor of ηX(i)− ηX(j) which is weakly of order ε. Thus

we may stipulate that

ΩεηX(i) '
∑

j:‖j−i‖=ε

[ηX(j)− ηX(i)] +
1

2
[ηX(i) + ηX(j)][AX(j)−AX(i)]. (7)

The first term in the above display has already been identified as the discrete

Laplacian ∆εηX(i). The second term can be written as

1

2

∑
j:‖j−i‖=ε

[ηX(i) + ηX(j)][AX(j)−AX(i)]

= ηX(i)
∑

j:‖j−i‖=ε

[AX(j)−AX(i)]

+
1

2

∑
j:‖j−i‖=ε

[ηX(j)− ηX(i)][AX(j)−AX(i)].

Now we identify the first term on the right hand side as ηX(i)∆εAX(i). To address the

second term, we recall the forward and backward lattice gradients (and divergences):

Let f(i) be a lattice function and ês a standard unit vector, then

∇+
ε f(i) :=

d∑
s=1

[f(i+ εês)− f(i)]ês

∇−ε f(i) :=
d∑
s=1

[f(i)− f(i− εês)]ês.
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In this language, the term of interest becomes

1

2

∑
j:‖j−i‖=ε

[ηX(j)− ηX(i)][AX(j)−AX(i)]

=
1

2

[
∇+
ε ηX(i) · ∇+AX(i) +∇−ηX(i) · ∇−ε AX(i)

]
.

To conclude the conservative case we observe that the stated dynamics for N(x, t)

in Eq. (1) reads (at least classically) that

∂N

∂t
= 4N +∇ · (N∇wN ) = 4N +N4wN +∇N · ∇wN .

This has been formally reproduced by ΩεηX , the generator for the discrete process

acting on the particle density.

The preceding readily generalizes to the case where the particle content is allowed

to vary. In the context of equilibrium statistical mechanics this is implemented by the

introduction of the chemical potential, µ ∈ R, and defining the weights

w̃(X) = w(X) · e−H(X) · eµ
∑
j ηX (j)

of the grand canonical (probability) distribution for the configurations X. This is

formally the same as H → H−µn (although, strictly speaking, the latter is not referred

to as a “Hamiltonian”) and the transition rates in Eq. (6) may be applied. Starting with

the case H = 0, we augment the result of Eq. (5) with the non–conservative transitions

allowing ηX(k) → ηX(k) ± 1 at rate proportional to e
1
2
µ − ηX(k)e−

1
2
µ (which may be

familiar in the context of birth and death chains). Inserting the full Hamiltonian, the

result for the non–conservative transitions becomes

ΘεηX(k) ∝ e
1
2

(µ−A
X

(k)) − ηX(k)e−
1
2

(µ−A
X

(k)).

Consistent with diffusive scaling, we take the constant of proportionality to be ε2 and

add the above Θε to the old Ωε from Eq. (7) in order to acquire the full generator. The
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resultant discrete dynamics is then seen to be in correspondence with

∂N

∂t
=
[
∇2N +∇ · (N∇wN )

]
+
[
e

1
2

(µ−wN ) −Ne−
1
2

(µ−wN )
]
. (8)

The equation above is the subject of our analysis. It is here noted that N ≡ m0 is always

a stationary solution. The purpose of this work is to show that under conditions of

sufficient thermodynamic stability for m0, and suitable conditions on the initial density,

the density converges to this uniform state exponentially with a rate that is independent

of the volume.

1.3 Statements of Main Theorems

We conclude this section by stating our main result. Hereafter, we shall use the notation

m0 to denote not only the numerical value but also the stationary density that is

identically equal to this value; it is assumed that no confusion will arise.

We need a few preliminary definitions: For κ ∈ (0, 1
2) we define the set of functions

Bκ = {N : TdL → R : κm0 < N <
1

κ
m0}.

Also, for α > 0 we define

vα = sup
k
|k|α|Ŵ (k)|,

where f̂(k) denotes the kth Fourier coefficient of f :

f̂(k) =

∫
TdL
f(x)eik·x dx.

(The factor of Ld is restored in the inverse transformation.) Moreover, for a function

Y and any m > 0,

‖Y ‖Dm =
1

Ld

∑
k

|k|m|Ŷ (k)|. (9)

The main theorem is as follows:
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Theorem 1.1 (Main Theorem) Let W be an H–stable interaction kernel with finite

range (i.e., W vanishes outside a ball of finite radius around the origin which is assumed

to be small relative to L). Under the regularity assumptions that v4 <∞ and ‖W‖D2 <

∞ let us suppose that m0 is sufficiently small so that the conclusion of Proposition 4.1

holds for some κ′ < 1
2 . In addition, suppose the initial density N0 is in Bκ′ and

‖ logN0‖D2 <∞.

Then we have that for all t,

Gµ(Nt)− Gµ(m0) ≤ [Gµ(N0)− Gµ(m0)] · e−λ†t

for some λ† > 0. Moreover, the same type of estimate holds for the L2–squared differ-

ence with the stationary solution:

‖Nt −m0‖2L2 ≤
1

σ
[Gµ(N0)− Gµ(m0)] · e−λ†t

for some σ > 0.

Moreover we also have:

Theorem 1.2 Equation (8) induces a natural distance D(·, ·) (as given in Eq. (18))

defined (at least) for Borel measures which have an L2–density with respect to Lebesgue

measure and are bounded below. Furthermore, there is a discretization scheme of the

JKO–type associated with this distance which converges to the continuum evolution. In

particular, we have exponential decay in D(·, ·):

D(Nt,m0)2 ≤ g2

σ
[Gµ(N0)− Gµ(m0)]e−λ

†t,

where λ† and σ are the same as in the statement of the main theorem.

It is (re)emphasized that the convergence rate is uniform in volume; hence this
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result may be regarded as a requite first step for the – as of yet unformulated – infinite

volume study of these fluids.

2 Otto Distance & JKO

For many mass conserving parabolic pde’s – e.g., in particular Eq. (1) – the geometric

picture uncovered in [22] (see also the book [1]) has provided indispensable theoretical

insight as well as certain practical tools. However, for mass non–conserved cases, the

generalization of these ideas and their corresponding connection to some version of

optimal transportation has not been definitive. Here, with the tangibles provided by

Eq. (8) along with the functional Gµ(·) from Eq. (2) that this dynamic has a tendency

to minimize, we may parallel and – to some extent – extend, the developments of [22].

(We refer also to [18].)

In this section we will lay out the Riemannian structure underlying our evolution

equation by introducing an inner product on the space of measures and an associated

distance. Indeed, it is this underlying structure which motivates and clarifies the even-

tual exponential convergence to equilibrium. Associated with a distance is a natural

time discretization scheme, i.e., the JKO scheme, which we think of as an infinite di-

mensional analogue of an Euler scheme. In [13], minimizers of this scheme are used

to yield an approximate (weak) discretization to the underlying evolution; there, the

relation to the classical mass conserved transportation problem was used as a conduit

between this scheme and the original evolution equation.

In our case, instead of recourse to an explicitly pre–formulated transportation prob-

lem, we shall content ourselves with a Benamou–Brenier (see e.g., [3]) description of
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the distance, i.e., it is realized as the infimum over a set of advective transportation

possibilities. Further, we shall consider an approximation to the distance (over short

times) wherein our analogue of the continuity equation shall be linearized at the initial

density. It is with this approximate distance that we shall define our JKO–type scheme

in the next section. Our ideology, at least in this work, is therefore that the under-

lying abstract Riemannian structure should be used as a guide to what is ultimately

a very concrete approach. Thus we shall not provide too many rigorous foundations

for our discussions in this section; the basic results establishing that we indeed have a

reasonable distance can be found in Appendix B.

Our starting point is to consider a suitable collection B of Borel measures on TdL.

For the purposes of the current work, the setting which leads to the most expedient

developments is to consider measures given by a density which is positive and is also

in L2:

B = {ν a Borel measure on TdL | ν ∈ L
2 and ν > 0}. (10)

What is to follow is motivated by writing Eq. (8) in advective form. The transport

velocity field, denoted by V , clearly takes the form 1

V = −∇ΦN , with ΦN :=
δGµ
δN

= logN − µ+ wN .

The right hand side of Eq. (8) is obviously not identically zero. But, it is noted, it has

the same sign as ΦN . Thus, we may rewrite Eq. (8) in the form:

∂N

∂t
= ∇ · (N∇ΦN )− ΩNΦN . (11)

1In traditional fluid mechanics, see e.g., [27], it is the positive gradient of the velocity potential which

produces the velocity field. We adhere to the convention used in [22] wherein it is the negative gradient.
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Here

ΩN :=
Ne−

1
2

(µ−wN ) − e
1
2

(µ−wN )

logN − µ+ wN
(12)

is seen to be positive and tending to a definitive limit (which incorporates into the

definition) if both numerator and denominator vanish. We regard Eq. (11) as the

fundamental advective form for the inhomogeneous case. In particular, we will say

that N is advected by Q, if it satisfies Eq. 11 with ΦN replaced by Q and with ΩN

exactly as in Eq. (12).

We reiterate that our equation is of a form which is often referred to as one of a

reaction diffusion type. It is perhaps worth contrasting our case with the case studied

in [19] (see the final display of Section 1 therein) and [16]: Here, instead of a constant –

or a fixed function, as is studied in [6] – as the weighting factor for the inhomogeneous

term, we have the fully nonlinear term ΩN/N .

For N ∈ B let us consider the tangent space, TN at N . This is understood as the

behavior at time t = 0 of all trajectories in B passing through N at t = 0 i.e., possible

values of ∂N
∂t

∣∣
t=0

. As in the mass conserved cases, these objects are in correspondence

with potentials which advectively cause ∂N
∂t to take on this value: Specifically, for

M ∈ TN we may define Q = Q(M) to be the potential which satisfies the elliptic

equation

M = ∇ · (N∇Q)− ΩNQ. (13)

For M1,M2 ∈ TN it is thus natural to define

gN (M1,M2) = −
∫
TdL
M1Q2 dx = −

∫
TdL
M2Q1 dx. (14)

In particular (after an integration by parts)

gN (M1,M2) =

∫
TdL
N(∇Q1 · ∇Q2) + ΩN (Q1 ·Q2) dx =: 〈〈∇Q1,∇Q2〉〉N (15)
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which is akin to a Sobolev inner product (for potentials) on TdL. It is manifest that

gN (·, ·) is positive definite and therefore defines a requisite inner product for elements

of TN .

Next, we will demonstrate that Eq. (8) can be envisioned as the gradient flow of

Gµ(·) with respect to this metric. First, let us use this metric gN (·, ·) to define a

B–gradient. Consider a simple functional on B of the form

J (B) =

∫
TdL
J(B, x) dx

where, e.g., J is of class C1. The directional (Gâteaux) derivative at N in the direction

M is defined by

dJ (N ;M) := lim
ε→0

J (N + εM)− J (N)

ε

– when it exists – and is given explicitly by

dJ (N ;M) =

∫
TdL

δJ

δN
(N) ·M dx.

Therefore, by analogy with the finite dimensional cases, we use the metric to define

the gradient via

dJ (N ;M) := gN (∇BJ ,M).

In light of the explicit form of the directional derivative, we may identify ∇BJ with

the associated advective potential δJ
δN .

This nearly completes the program. Consider a weakened version of Eq. (11) which

in the current language reads

−
∫
TdL
Q
∂N

∂t
dx = 〈〈∇Q,∇ΦN 〉〉N

for some test function Q. As above, we denote by M = M(Q) the solution of the

advective equation Eq. (13). We remind the reader that in the above display, ΦN =
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logN − µ+ wN =
δGµ
δN and so this form of Eq. (11) can be written as

gN (M,
∂N

∂t
) = −gN (M,∇BGµ) ( = −

∫
TdL
M
δGµ
δN

).

Or, informally, against the backdrop of the given gN (·, ·),

∂N

∂t
= −∇BGµ;

this then fully justifies the terminology “gradient flow”.

The above metric g(·)(·, ·) allows for a definition of distance between elements of B.

Foremost, for V1, V2 ∈ L2 which are vector valued and Q1, Q2 ∈ L2 which are scalar

fields, we may define the inner product akin to that which we defined for gradient fields

〈〈(V1, Q1), (V2, Q2)〉〉N :=

∫
N(V1 · V2) + ΩNQ1Q2 dx. (16)

We emphasize that in this definition there is no a priori relationship between V1 and

Q1, etc. However, notice that if V1 = ∇Q1, V2 = Q2, the above notation coincides

with our prior use of 〈〈∇Q1,∇Q2〉〉N ; both notations will be used and the meaning shall

always be clear from the context.

In what follows (and in general in these contexts) we will use a subscript of t to

denote time dependence – not to be confused with a partial derivative. Then, for N0,

N1 in B we may consider the set of vector and scalar field pairs which drive Nt from

N0 at t = 0 to N1 at t = 1 according to the dynamics in the below display in such a

way that ∂Nt
∂t remains in L2(TdL × (0, 1)):

V (N0, N1) := {V ∈ L2(Nt), Q ∈ L2(ΩNt) |
∂Nt

∂t
+∇ · (NtV ) = −ΩNtQ

with Nt=0 = N0, Nt=1 = N1 and
∂Nt

∂t
∈ L2}.

(17)

We claim that the set V (N0, N1) is non–empty since we may consider the straight

line path Nt = (1 − t)N0 + tN1 and find a (time dependent) gradient field which
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drives N along this path. Indeed, here, ∂Nt
∂t is given by N1 −N0 which is in L2. Now

given a curve in B indexed by Nt, we may consider the Hilbert space (for potentials)

equipped with the inner product (φ, ψ)Nt given by
∫ 1

0 〈〈(∇φ, φ), (∇ψ,ψ)〉〉Nt dt. Since

Nt is bounded from below, it turns out that ΩNt is also bounded below (c.f., Eq.(39)).

Thus, the L2–norm of a potential φ is bounded above by a constant times the norm

induced by the Hilbert space. It then follows that (integration against) N1−N0 can be

viewed as a bounded linear functional on the Hilbert space and so the required driving

gradient field is existentiated by the Riesz Representation Theorem.

We now define the distance D via

D2(N0, N1) = inf
(V,Q)∈V (N0,N1)

∫ 1

0
〈〈(V,Q), (V,Q)〉〉Nt dt, (18)

or, equivalently, for (V,Q)’s in VT (N0, N1) which drive N0 to N1 on [0, T ],

D2(N0, N1) = inf
(V,Q)∈VT (N0,N1)

T

∫ T

0
〈〈(V,Q), (V,Q)〉〉Nt dt.

We remark that while the minimization problem is envisioned as minimizing over all

paths Nt : N0  N1, in fact the only paths which are conceivably of interest are

those which can be achieved by some (V,Q) as described. Since all of this is already

encoded in the definition of V (N0, N1), minimization of the functional over this set is

appropriate and sufficient. It can be demonstrated that D2(·, ·) is indeed the square of a

distance which separates points and that for all intents and purposes, any minimization

program for D2(·, ·) may be carried out by considering only those fields which are

derived from a velocity potential. These results have been collected in Appendix B.

Remark 2.1. Here we emphasize that the existence of a distance between points in

B (and one may hope to presume all Borel measures on TdL) automatically defines an

(abstract) optimal transport problem in this context: Indeed, the explicit realization
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of the distance as an infimum implies a transport problem wherein the “optimal path”

minimizes the relevant functional. It is unfortunate that these problems have not been

tied to an explicit Monge–Ampere or Kantorovich type formulation.

Having introduced the preceding metric structure on B and demonstrated the gra-

dient flow properties of Eq. (11) for the functional Gµ(·) with respect to this metric,

we may then consider the following JKO–type scheme:

Nt+h = Argmin{1

2
D2(Nt, N) + hGµ(N)}. (19)

This is a direct generalization of the scheme in [13] to these inhomogeneous cases.

3 The Approximate Functional

In this section we will proceed to construct an approximate functional whose mini-

mizers will explicitly yield a discretization of our equation. It should be emphasized

that JKO–type functionals, even when summed up over all iterations, do not admit

a meaningful h tends to zero functional to be minimized – these are dissipative sys-

tems. In this sense, all such functionals are finite h “approximates”. An alternative

approach to discretization (which may have applicability to the system studied here) is

to construct regularized functionals, e.g., the so–called WED functional. Again in this

case, while there is strictly speaking no limiting functional, the limit of the minimizers

does correspond to a solution of the original system. See [24], [21], [25] and references

therein.

Here for motivational purposes it is worthwhile to understand the difference be-

tween our situation and the mass conserved case as treated in [13]. In the latter, the

exact approximate functional (e.g., as displayed in Eq. (19)) was employed. It was
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found that the minimizers were an approximate discretization converging to the rel-

evant dynamics. To accomplish these ends, virtually all of the existing machinery of

optimal transportation were deployed. This includes, but is not limited to: A well

formulated and well studied underlying transportation problem, the coupled measure

description for the Wasserstein distance, the pushforward formalism, a relation be-

tween the Wasserstein distance and variance, and, finally, the connection with the

Benamou–Brenier description via transport fields.

The key difference here is that no such ancillary machinery has as of yet been

developed for non–conservative problems. Indeed, all we have is the Benamou–Brenier

formalism – which here defines the distance itself. Thus, instead of deploying the exact

approximate functional, we shall use an approximate approximate functional whose

exact minimizers provide a discretization. The principle difficulty in our approach is

that the discretization arrived at is not as viable as the discretization acquired in [13]

which (still only) approximated the minimizers. Hence, here, to obtain the h tends to

zero limiting dynamics, an arduous, albeit elementary analysis is required. However,

these technicalities can be neatly quarantined and are the subject of Appendix A.

3.1 Definition and Minimization

The starting point of our program entails a discretization of the distance itself (for

small times). Let h > 0 which we envision to be small and consider times 0 ≤ t ≤ h.

Let us replace the previously described distance functional by one where Nt is replaced

in two crucial places by N0. In particular, for all intents and purposes, under the

auspices of h� 1 we are replacing Nt with N0 in the inner product: 〈〈·, ·〉〉Nt → 〈〈·, ·〉〉N0

and allowing this to inherit into the (approximate) dynamics. Starting with the latter,
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for fixed φ we write

∂Nt

∂t
= ∇ · (N0∇φ)− ΩN0φ. (20)

Then the approximate distance is defined as

D2
A(N0, Nh) := inf

φ

∫
TdL
h

∫ h

0
N0|∇φ|2 + ΩN0φ

2 dtdx

where under the above approximate dynamics, φ gets us to Nh at time t = h. (We

reiterate that since Nh is considered fixed, corresponding to each φ is an interpolating

curve Nt from N0 to Nh.) With φ as argument (not necessarily minimizing anything)

we will denote the right hand side by EA(·):

EA(φ) := h

∫ h

0
〈〈∇φ,∇φ〉〉N0dt =

∫
TdL
h

∫ h

0
N0|∇φ|2 + ΩN0φ

2 dtdx.

Under reasonable conditions, we expect that for fixed N0 there is a unique static field

which drives the system to Nh at time t = h. (See Eq. (21) in the statement of Propo-

sition 3.2 below.) Since we will be utilizing Hilbert space structures, it is pertinent

now to introduce notation for the relevant space of driving fields.

Definition 3.1. We let HN0 denote the Hilbert space (of driving fields) with the

weighted inner product

〈〈∇φ,∇ψ〉〉N0 =

∫
TdL
N0(∇φ · ∇ψ) + ΩN0φψ dx.

The dual space will be denoted by H−1
N0

.

Our first observation is that the static field φ described above actually minimizes

the approximate distance functional:

Proposition 3.2 For fixed Nh −N0 ∈ H−1
N0

and any driving field ϕ, let DA(N0, Nh)

and EA(ϕ) be as described. Then the minimum for DA(N0, Nh) is achieved by the
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unique static φ ∈ HN0 which satisfies

Nh −N0

h
= ∇ · (N0∇φ)− ΩN0φ. (21)

Proof. Since Nh−N0 is a bounded linear functional on HN0 , the existence (and unique-

ness) of the required φ again follows directly from the Riesz Representation Theorem.

Let us adapt the temporary notation N
[ϕ]
t for a density driven, according to the

approximate dynamics, in the time interval 0 ≤ t ≤ h by the field ϕ. A general driving

field which achieves Nh at t = h may be written in the form φ+α with α (necessarily)

depending on time. We have, weakly,

∂

∂t
N

[φ+α]
t = ∇ · [N0∇(φ+ α)]− ΩN0(φ+ α)

=
∂

∂t
N

[φ]
t +∇ · (N0∇α)− ΩN0α. (22)

It therefore follows that if ψ is a suitable time independent test function then

0 =

∫ h

0

∫
TdL
ψ(∇ · (N0∇α)− ΩN0α) dxdt

= −
∫ h

0

∫
TdL
N0(∇ψ · ∇α) + ΩN0ψα dxdt.

In particular, plugging in φ, we have∫ h

0

∫
TdL
N0(∇φ · ∇α) + ΩN0φα dxdt = 0.

Now we consider EA(φ+ α):

EA(φ+ α) = h

∫ h

0

∫
TdL
N0(|∇φ+∇α|2) + ΩN0(φ+ α)2 dxdt = EA(φ) + EA(α)

where, by the preceding display, the cross term has vanished. Since EA(α) is positive,

the result is established.

Definition 3.3. Given a fixed N0, let us now consider the JKO type functional asso-

ciated with DA:

JA(N0, N) :=
1

2
D2
A(N0, N) + hGµ(N).

25



Remark. Let us observe that if N0 ∈ B then in fact N0 ∈ H−1
N0

: Indeed,

|
∫
TdL
N0φ dx| ≤ ‖N0‖

1
2
1 · ‖

√
N0φ‖2 ≤ ‖N0‖

1
2
1 · ‖φ‖HN0

.

We first show that the functional JA(N0, ·) can be minimized.

Proposition 3.4 Let N0 ∈ B. Then the functional JA(N0, ·) has a minimizer in H−1
N0

.

Furthermore, this minimizer is in L1.

Proof. For any N0, we easily have that JA(N0, ·) is bounded below. Explicitly, the

function N logN − (1 +µ)N is minimized at N = eµ with value −eµ whereas the term

involving W is positive by H–stability so (since we are in finite volume) the full free

energy integral is bounded below. The distance term is of course positive.

Let us then take some minimizing sequence N (j) in H−1
N0

. By the observation in

Definition 3.3, since N0 ∈ B, it is the case that N0 ∈ H−1
N0

and so N (j) − N0 ∈ H−1
N0

.

We now consider the driving fields φ(j) corresponding to N (j) as given in Proposition

3.2 so that

N (j) −N0 = h
[
∇ · (N0∇φ(j))− ΩN0φ

(j)
]
. (23)

Now

D2
A(N0, N

(j)) = h

∫ h

0

∫
TdL
N0|∇φ(j)|2 + ΩN0(φ(j))2 dxdt

must be bounded since the free energy is bounded below and, further, the right hand

side is just h2 times 〈〈∇φ(j),∇φ(j)〉〉N0 . We may therefore assert that along some further

subsequence, if necessary, φ(j) converges weakly with respect to the inner product

structure to some φ∗ ∈ HN0 . Let us next define N∗ as the density corresponding to

this φ∗: We let N∗ ∈ H−1
N0

be such that for all ψ ∈ HN0 ,

N∗[ψ] =

∫
TdL
N0ψ dx− h

∫
TdL
N0(∇φ∗ · ∇ψ) + ΩN0φ

∗ψ dx.
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On the basis of the weak convergence of the φ(j)’s we claim that the N (j)’s have a

weak limit (in H−1
N0

) and that N∗ is this limit. Indeed, letting ψ denote some suitable

test function, we have

lim
j→∞

∫
TdL
N (j)ψ dx

=

∫
TdL
N0ψ dx− h lim

j→∞

∫
TdL
N0(∇φ(j) · ∇ψ) + ΩN0φ

(j)ψ dx

=

∫
TdL
N0ψ dx− h

∫
TdL
N0(∇φ∗ · ∇ψ) + ΩN0φ

∗ψ dx

= N∗[ψ].

(We remark that the above realization of N∗ as a weak limit also implies that it is

nonnegative.)

On the other hand, we claim that N∗ is in fact (at least) an L1–function: It is

the case that N (j) logN (j) is integrable and its integral is uniformly bounded and so it

follows (by Jensen’s inequality) that ‖N (j)‖L1 is uniformly bounded. Thus we assert

that the associated measures converge vaguely and that the limit can be represented by

an L1–function which can then be identified with N∗ (see for example the exposition

in [7]).

We now claim that

lim inf
j→∞

JA(N0, N
(j)) ≥ JA(N0, N

∗).

The lower semicontinuity of the terms involving N logN−(1+µ)N and the D2
A(N0, N)

term follow directly from convexity (indeed, D2
A(N0, N

(j)) is explicitly convex in the

variables φ(j)).

Now we address the interaction term. First note that for any function M , we have

∫
TdL×T

d
L

W (x− y)M(x)M(y) dxdy =
1

Ld

∑
k

Ŵ (k)|M̂(k)|2.
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By the convergence of the N (j)’s to N∗, it is clear that for any fixed k, we have

N̂ (j)(k)→ N̂∗(k).

Let us obtain an a priori estimate for N̂ (j)(k): Explicitly, we have that

(N̂∗ − N̂ (j))(k) = −h
∫
TdL
eikx

[
ik ·N0((∇φ∗ −∇φ(j)) + ΩN0(φ∗ − φ(j))

]
dx.

Taking absolute values and using Cauchy–Schwarz, we see that

|(N̂∗ − N̂ (j))(k)| ≤ G|k|

for some G <∞ (for k sufficiently large).

Now we apply the formula for the convolution displayed above to the quantity∫
TdL

(W ∗(N∗−N (j)))(N∗−N (j)) dx to show that it tends to zero: We obtain (dropping

the factor of 1
Ld

)

∑
k

Ŵ (k)|(N̂∗ − N̂ (j))(k)|2

=
∑
|k|<k0

Ŵ (k)|(N̂∗ − N̂ (j))(k)|2 +
∑
|k|≥k0

Ŵ (k)|(N̂∗ − N̂ (j))(k)|2

for some fixed k0 � 1. As j tends to infinity, the first term tends to zero. For the

second term, using the estimate derived above, we are left with

∑
|k|≥k0

Ŵ (k)|(N̂∗ − N̂ (j))(k)|2 ≤ G2
∑
k≥k0

k2|Ŵ (k)|.

Since ‖W‖D2 <∞, the right hand side is the tail of a convergent sum and can be made

arbitrarily small. We conclude that limj→∞
∫
TdL

(W ∗N (j))N (j) dx =
∫
TdL

(W ∗N∗)N∗ dx.

It follows that

inf{JA(N0, N), N ∈ H−1
N0
} = lim

j→∞
JA(N0, N

(j)) ≥ JA(N0, N
∗)

and so indeed N∗ is the minimizing element of H−1
N0

.
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We will hereafter refer to the minimizer found in the above as Nh; while we cannot

yet claim that Nh is uniformly bounded below, we do have:

Proposition 3.5 Let Nh ∈ H−1
N0
∩ L1 denote the minimizer of JA(N0, ·) as given in

Proposition 3.4. Then Nh is positive almost everywhere.

Proof. Let N ∈ H−1
N0
∩ L1 denote any nonnegative function for which the quantity

JA(N0, N) is finite and let

S0 = {x : N(x) = 0}.

Note that S0 is measurable since it is the complement of supp(N). If it were the

case that S0 has positive (Lebesgue) measure, then, we claim, it is possible to modify

N so as to lower JA(N0, ·). Indeed, let n be the indicator function of S0 so that∫
S0 n(x) dx =: n0 > 0 is the measure of S0. Now consider the modification N 7→ N+εn

for some (small) ε > 0. The key observation is that the effect of this modification on

all terms contributing to JA(N0, ·) except the entropy term (i.e., the N logN term) is

of order ε.

We first observe that certainly n ∈ H−1
N0
∩ L1 and so by Proposition 3.2, there is

some ψ so that

n = ∇ · (N0∇ψ)− ΩN0ψ.

It therefore follows that if φ drives N0 to N (the subject of Proposition 3.2) then φ+εψ

will drive N0 to N+εn. For the distance squared term, note that e.g., D2
A(N0, N+εn) ≤

h2(‖φ‖HN0
+ ε‖ψ‖HN0

)2. The interaction term also has a linear (and quadratic) ε

modification with bounded coefficients. Meanwhile,∫
TdL

(N + εn) log(N + εn)−N logN dx =

∫
S0
nε log εn dx = n0ε log ε

which is negative and of considerably larger magnitude as ε tends to zero.
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Thus, since Nh is a minimizer, the stated result follows.

3.2 Discretization

We are now ready to show that successively running our JKO type scheme yields a

discretization of our equation.

Proposition 3.6 Let Nh ∈ H−1
N0
∩ L1 denote the minimizer of JA(N0, ·) as given in

Proposition 3.4. Then N0, Nh yield a weak discretization of the dynamics in Eq. (8).

I.e., for all ψ ∈ HN0,

∫
TdL

Nh −N0

h
ψ = −

∫
TdL
N0(∇ΦNh · ∇ψ) + ΩN0ΦNhψ, (24)

i.e., weakly,

Nh −N0

h
= ∇ · (N0∇ΦNh)− ΩN0ΦNh . (25)

Further, ΦNh ∈ HN0.

Proof. Let us denote by φ ∈ HN0 the corresponding (static) field which drives the

system from N0 to Nh in the time interval 0 ≤ t ≤ h under the dynamics in Eq. (20),

as given by Proposition 3.4 (the φ here corresponds to the φ∗ in the proof of Proposition

3.4). Temporarily, letting κ > 0, we consider the variation Nh 7→ Nh + εη with an η

which is bounded, in H−1
N0

, and is supported on the set {Nh(x) > κ}.

Now there is a corresponding variation in the driving field which we denote by εψ,

so that φ 7→ φ+ εψ “drives” N0 to Nh + εη. Since the relevant equations are linear, ψ

and η are simply related via

η = ∇ · (N0∇ψ)− ΩN0ψ (26)

and so given η, the required ψ ∈ HN0 is given by Proposition 3.2.
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Now to lowest order in ε,

Gµ(Nh)→ Gµ(Nh) + ε

∫
TdL
η
δGµ
δN

dx = Gµ(Nh) + ε

∫
TdL
ηΦNh dx. (27)

It is readily verified that all higher order terms divided by ε tend to zero as ε tends to

zero (all coefficients are explicitly bounded since η is supported only where Nh > κ).

Let us turn attention to the distance–type term. Here we have, exactly,

D2
A(N0, Nh + εη)− D2

A(N0, Nh)

= −
∫
TdL

(Nh + εη −N0)(φ+ εψ) dx−
∫
TdL

(Nh −N0)φ dx

= −
∫
TdL
εηφ+ ε(Nh −N0)ψ dx− ε2

∫
TdL
ηψ dx;

it is clear that the ε2 term can be neglected. We now claim that the (Nh−N0)ψ–term

reproduces the ηφ–term: Indeed we have, from Eq. (21), that

∫
TdL

(Nh −N0)ψ dx = h

∫
TdL

(∇ · (N0∇φ)− ΩN0φ)ψ dx = −h〈〈∇φ,∇ψ〉〉N0 . (28)

Since the inner product is symmetric, after a formal integration by parts, the role of φ

and ψ can be exchanged and we use the weak form of the elliptic equation defining ψ

(as in Eq.(26)) to replace the expression involving ψ with η.

In combination with Eq.(27) we now see that the stationarity condition for the

minimizer of JA(N0, ·) yields

∫
TdL
η(φ− ΦNh) dx = 0.

This implies that ΦNh = φ on the set {Nh > κ}. By Proposition 3.5, the sets {Nh > κn}

for κn → 0 are exhaustive and so κ > 0 can be made arbitrarily small and we see that

ΦNh = φ a.e. Since φ ∈ HN0 we also conclude that ΦNh ∈ HN0 .
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Now to reproduce some discretization of the dynamics, we replace φ by ΦNh on the

right hand side of Eq.(28) to obtain

0 =

∫
TdL

(
Nh −N0

h

)
ψ +N0(∇ΦNh · ∇ψ) + ΩN0ΦNhψ dx (29)

for all ψ ∈ HN0 ; i.e., weakly, Eq. (25) is satisfied.

For W of positive type, the overall JA(N0, ·) is strictly convex and uniqueness of

Nh is guaranteed. In the more general circumstances of present interest, uniqueness

will be established under the restrictive (presumably unnecessary) hypothesis that N0

is classical.

Lemma 3.7 Given N0 ∈ B which is also C 1, for h sufficiently small depending

only on N0 and various norms on W , there is a unique solution to Eq.(25) such that

Nh ∈ L1. In particular, at least in the case that N0 ∈ C 1, the minimizer for JA(N0, ·)

from Proposition 3.6 is unique and so in fact logNh ∈ HN0.

Proof. Assuming the result is not true, let Na, Nb ∈ L1 denote two purportedly dif-

ferent solutions to Eq. (25). We define Ψa := logNa and similarly for Ψb. We also

define

Nab := Na −Nb, Ψab := Ψa −Ψb.

From Eq. (25) we see that Nab satisfies

Nab = h [∇ · (N0∇Ψab)− ΩN0Ψab]

+ h [∇ · (N0(∇W ∗Nab))− ΩN0(W ∗Nab)] .

Assuming towards a contradiction that Nab is not identically zero, we wish to consider

a set which we denote by S where the value Nab is sufficiently large.
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Let us examine the difference of Na and Nb subtracting a fraction hcW > 0 from

the left hand side where cW is a constant to be determined shortly:

(1− hcW )Nab = h [∇ · (N0∇Ψab)− ΩN0Ψab]

+ h [∇ · (N0∇(W ∗Nab))− ΩN0(W ∗Nab)− cWNab)] .

(30)

We claim that on some set (corresponding to the S alluded to above) with a proper

choice of cW , the terms on the second line of the above display total to a quantity

which is pointwise negative, i.e.,

−hVab(x) := h [∇ · (N0∇(W ∗Nab))− ΩN0Wab − cWNab] (x) < 0

for x in the presumed set. The fact that here −Vab < 0 is pertinent to the remainder of

the argument and to establish this negativity, we will need to consider the cases where

Nab ∈ L∞ and Nab /∈ L∞ separately.

First suppose Nab ∈ L∞ and let mab = ‖Nab‖∞. In this case we let

S = {Nab >
mab

2
}, (31)

where without loss of generality we may assume that this set is of positive measure.

For example, for x ∈ S, the term N0(∇2W ∗Nab) is easily bounded:

|N0(x) · (∇2W ∗Nab)(x)| = | N0(x)

∫
TdL
∇2W (x− y)Nab(y) dy |

≤ mab ·W2‖N0‖∞,

where W2 =
∫
TdL
|∇2W (y)| dy. The other terms are bounded proportional to mab as

well with constants now involving ‖∇N0‖∞, W1 (with W1 defined similarly to W2) and

‖ΩN0‖∞ (which is finite since N0 ∈ L∞). Now since x ∈ S, we have Nab(x) > 1
2mab, so

the negative term −cWNab can be made to compensate for any positive contributions

from the other terms for cW sufficiently large depending not on h but only on the

particulars of W and N0.
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Let us now address the case where Nab /∈ L∞. We claim that a modification of the

preceding argument also shows −Vab < 0 on a modified version of S. To this end let

us define

Mab = sup
x∈TdL

∫
Ba(x)

|Nab(y)| dy

where Ba(x) is the ball of radius a around x, where we recall that the range of W is

also denoted by a. (Mab is guaranteed to be finite since Nab ∈ L1 but is ostensibly

independent of the total volume; since a is a fixed scale, for convenience we have

omitted the customary volume factor in the above definition.) Here let us define

S = {Nab > Mab}.

Since W (x− y) vanishes outside of Ba(x), it follows that e.g.,

|∇N0(x) · ∇(W ∗Nab)(x)| ≤ |∇N0(x)| · |
∫
Ba(x)

|∇W (x− y)Nab(y) dy |

≤Mab · ‖∇W‖∞‖∇N0‖∞.

Similar estimates hold for the other terms and so the conclusion follows as before. We

note particularly from Eq. (30) that the term Mab is directly suppressed by Nab on the

set S and so as before cW only depend on N0 and W and not on Nab,Ψab or h.

Next we will expand the left hand side of Eq. (30) using the notation

Nab = Ψab + [E2(Ψa)− E2(Ψb)],

where E2(x) = ex − (1 + x). After some rearrangement, Eq. (30) becomes

Ψab =
h

1− hcW
[∇ · (N0∇Ψab)]

− h

1− hcW
[ΩN0Ψab + Vab]− [E2(Ψa)− E2(Ψb)] .

First let us observe that the second line in the above equation is pointwise negative for

x ∈ S; we will denote the entirety of the second line by −Pab. Next let us define

K(·) = − 1

1− hcW
∇ · [N0∇(·)].
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The equation now takes the form

(I + hK)Ψab = −Pab,

where I denotes the identity operator. We note that K is a nonnegative self–adjoint

operator; indeed, the matrix elements in the standard basis are given by

Kq,p =
1

1− hcW
(p · q)N̂0(p− q).

We may therefore write

Ψab = −(I + hK)−1Pab. (32)

Let ε > 0 which is envisioned to be small as will be specified later. We claim

that there is a subset of S which is of nonzero measure such that |Ψab − Ψ∗ab| < ε

and |Pab − P ∗ab| < ε for some values Ψ∗ab and P ∗ab. Indeed, all that is required is

the observation that e.g., S = S ∩ ∪kSab,k where Sab,k = {x : 2
3(k − 1

2)ε < |Ψab| <

2
3(k+ 1)ε}; we obtain a similar decomposition for Pab. So (up to a set of measure zero)

S = S ∩ (∪kSab,k) ∩ (∪`SP,`). Since all unions are countable, there must exist k and

` such that Sab,k ∩ SP,` has nonzero measure; let us denote this set by Sα and let χα

denote the indicator function of this set. We will now integrate Eq.(32) on Sα:

∫
TdL
χαΨab dx = −

∫
TdL
χα(I + hK)−1Pab dx. (33)

The left hand side of Eq. (33) is within ε of |Sα|Ψ∗ab. Next we claim that by the

positivity and self–adjointness of the operator K, we may write the operator identity

(I + hK)−1 = I− hK(I + hK)−1.

The right hand side of Eq. (33) can therefore be written as

−
∫
TdL
χαPab dx+

∫
TdL
χα[hK(I + hK)−1Pab] dx.
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In the above we observe that both (1+hK)−1 and hK(I+hK)−1 are bounded operators

e.g., in L2 and further that hK(I + hK)−1 has operator norm less than one.

The first term in the above display is within ε of −|Sα|P ∗ab. As for the second term,

since the relevant operator is self adjoint,∫
TdL
χα[hK(1 + hK)−1Pab] dx

≤

[∫
TdL

(hK(1 + hK)−1χα)2 dx

] 1
2 [∫

Sα
P 2
ab dx

] 1
2

≤ |Sα|(P ∗ab + ε),

where we have used that the operator norm of hK(I + hK)−1 is less than one. So

the terms on the right hand side of Eq. (33) add up to no more than 2ε|Sα|. Now if

ε � Ψ∗ab (and hence much less than mab or Mab depending on which case we are in)

we would conclude the result (by contradiction of Eq. (33)) via the estimates we have

just derived.

3.3 Overview of the Iteration Scheme

We now provide the overview of how our JKO–type scheme is to be continued. Start-

ing with some N0, we define N1 = argmin{JA(N0, ·)}, N2 = argmin{JA(N1, ·)}, etc.

However, the abstract methods used so far only yield N1 ∈ H−1
N0
∩L1 and logN1 ∈ H1

N0

whereas to show convergence of the overall scheme and to prove the main theorem

we require additional regularity, specifically uniform upper and lower bounds and D2

regularity. The improved regularity will follow from suitably strong assumptions on

N0 which will imply that N1 (and the successive Nk’s) in fact coincides with a classical

solution of Eq.(25), with well controlled norms. The detailed derivation of suitable

estimates are the subject of Appendix A; let us summarize the setting of this appendix

here:
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(a) The variables used in the appendix are logarithmic:

Ψ = logN.

(b) We employ “Fourier norms”: f ∈ D` means that the Fourier coefficients of the

`th derivatives of f are (absolutely) summable (see Eq. (9)). These norms are discussed

in a bit more detail in Section 5.2.

(c) We assume that the initial Ψ0 is inD2 and we also adopt the additional regularity

assumptions on the interaction potential, namely,

‖W‖D2 <∞ and v4 := sup
k
k4|Ŵ (k)| <∞.

(Often, one of these assumptions on W may be redundant: E.g., in d = 1, v4 < ∞

automatically implies W ∈ D2 whereas in the sufficiently high dimensions one may

expect the reverse.)

We now summarize the logical steps entailed in the program:

Step 1. We assume N0 ∈ B and Ψ0 ∈ D2.

Step 2. We find N1 = inf
{
JA(N0, N) : N ∈ H−1

N0

}
(see Proposition 3.4).

Step 3. By a variational argument, we conclude that N0 and N1 provides a one

step time discretization of Eq.(8) and in fact N1 is positive almost everywhere (see

Proposition 3.5) and ΦN1 ∈ HN0 (see Proposition 3.6).

Step 4. Since N1 satisfies the stationarity condition Eq.(25) and N0, N1 satisfy the

requisite conditions of Lemma 3.7, N1 is uniquely specified.

Step 5. Lemma 3.7 also implies that N1 coincides with the classical solution

obtained in Appendix A: I.e., Ψ1 ∈ D2 (see Corollary 5.4) and so N1 ∈ B. (It is noted

that since ‖Ψ1‖D2 is an upper bound on ‖∇2Ψ1‖∞, the D2–norm is stronger than the

C 2–norm.) We may now repeat the previous steps to obtain N2, N3, etc. For any fixed
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k, this allows for the production of N1, . . . , Nk, provided that h is sufficiently small.

Step 6. After k iterations, the macroscopic time achieved is only kh – thus vanish-

ing with h. However, we achieve a guaranteed nonzero macroscopic time, i.e., for some

fixed T > 0 and all h sufficiently small, the process can be carried out for at least the

order of h−1T iterations (see Proposition 5.6).

Step 7. Via a comparison with the continuum solution (see Proposition 5.7) it

is shown that the macroscopic time can be extended indefinitely; here h has to be

suitably small depending on the prescribed macroscopic time of simulation.

3.4 Convergence

Here we will show that the discretization scheme based on Eq. (25) indeed converges

to a solution to Eq.(8). We reiterate: Starting with some N0, we define N1, N2, . . . as

far as can be done. On occasion, we will denote Nk, the kth iterate by N
[h]
t for time

step h when k satisfies kh ≤ t < (k + 1)h; it is in this context that we take the h→ 0

limit.

Assuming that N
[h]
t exists for fixed nonzero t uniformly in h, the extraction of a

weak∗ limit is relatively easy: Indeed, since each step of the iteration only lowers the free

energy we have that N logN is integrable and hence so is N and so a (subsequential)

weak∗ limit certainly exists. Further, limited results pertaining to continuity in time –

Hölder–1/2 – can also be deduced from the structure implicit in the JKO type scheme,

along the lines of what was done in [13]. However, these ideas do not suffice for a

demonstration that the limiting object actually satisfies Eq.(8).

In order (to acquire enough control) to show that the limiting Nt satisfies the requi-

site equation, we have need for rather strong estimates, which we provide in Appendix
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A using Fourier methods. The analysis in Appendix A is performed essentially in the

context of classical solutions, but, by the uniqueness statement in Lemma 3.7, this solu-

tion will coincide with the minimizer of the iterative scheme. The setting for Appendix

A was summarized in the previous subsection.

For the purposes of the next theorem, consistent with the use in the proof of Propo-

sition 5.7, let us use the notation [·][h]
t for the various quantities encountered.

Theorem 3.8 Let T > 0 be arbitrary (so that the iterative process is suitably valid

for all h < hT with hT as in Proposition 5.7). Letting Ψ
[h]
t = logN

[h]
t , we have that

Ψ
[h]
t converges to a weak solution, Ψt, of Eq. (8) (written in these same logarithmic

variables) as h tends to zero, i.e., if b ∈ C 1
c (TdL × (0, T )),

∫
TdL×(0,T )

Nt
∂bt
∂t

dxdt =

∫
TdL×(0,T )

Nt(∇ΦNt · ∇bt) + ΩNtΦNtbt dxdt,

where as before ΦNt = logNt − µ+ wNt.

Moreover,

(A) This convergence is uniform in the D1–norm (and the D0–norm).

(B) Nt = eΨt is the unique solution to the continuous time equation as given by

Eq. (8) which is C∞ for positive times and Nt → N0 strongly in D0 as t→ 0.

Proof. Item (A) will be established in Appendix A after the proof of Proposition 5.7

and item (B) will be addressed briefly at the end of the proof. Let us now address the

main convergence result. We will first establish that if Nt is a weak limit of N
[h]
t as h

tends to zero, then Nt is a weak solution to Eq.(8). (It is clear, e.g., from the discussion

before the statement of this theorem that one can always extract a weak limit.)

Now consider some b ∈ C 1
c (TdL × (0, T )) which is integrated against both sides of

the iteration equation as given in Eq. (24) and then summed over the order of Th−1
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iterations (and using Φ
[h]
t = Ψ

[h]
t − µ+ w

N
[h]
t

):

∑
k

∫
TdL

(
Nk+1 −Nk

h

)
bk dx =

−
∑
k

∫
TdL
Nk

(
∇(Ψk+1 + wNk+1

) · ∇bk
)

+ ΩNk

(
Ψk+1 − µ+ wNk+1

)
bk dx,

(34)

where bk is a suitable time average over the interval hk ≤ t < h(k + 1). The left hand

side, after summation by parts, weakly converges to the integral of −Nt(∂bt/∂t). As

for the right hand side, for convenience we will now go over to the notation N
[h]
t instead

of Nk and N
[h]
t+h instead of Nk+1 etc., and then the sum over k can be replaced by an

integral over [0, T ]. First we observe that if it were the case that all the indices were

in agreement and e.g., equal to k+ 1, then the right hand side can be realized entirely

as a weak equation for N
[h]
t (with most of the burden of differentiation passed on to b)

which would converge weakly to the relevant limit. What we must estimate then is the

differences caused by the discrepancy in indices. For example, in the term containing

Ψ, forcing the indices to match yields the residual term

−
∫ T

0

∫
TdL

(N
[h]
t+h −N

[h]
t )(∇Ψ

[h]
t+h · ∇b) dxdt.

By the results obtained in Appendix A, specifically Corollary 5.8, iii), we have that

|∇Ψ
[h]
t | is uniformly bounded (e.g., in L∞) in both h and t while N

[h]
t+h − N

[h]
t =

eΨ
[h]
t+h − eΨ

[h]
t is bounded above by h times a function which, again, has a uniform L∞

bound. Hence, this error term disappears from consideration in the h→ 0 limit.

Identical considerations apply to the term N
[h]
t (∇w[h]

Nt+h
· ∇b). However, here the

situation is even less demanding since ∇w[h]
Nt+h

does not even involve gradients of Ψ. As

for the inhomogeneous term, it is slightly easier to do the reindexing on the Φ–terms.

We write

Φ
[h]
t+hΩ

[h]
Nt

= Φ
[h]
t Ω

[h]
Nt

+ (Φ
[h]
t+h − Φ

[h]
t )Ω

[h]
Nt
.
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The leading term on the right of the above display is of the correct form. Examining the

definition of Ω
[h]
Nt

, it is clear that if Nt is bounded in L∞ (which follows from Corollary

5.8, iii)) then so is Ω
[h]
Nt

. Since ΦN = ΨN − µ + wN , from Corollary 5.8 ii) and iii),

we have that |Φ[h]
t+h − Φ

[h]
t | is bounded by order h and this term also disappears in the

h→ 0 limit.

Finally, by standard regularity results about (uniformly) parabolic equations, we

have that Nt is smooth ([8]) for positive times and the convergence to initial data can

be easily gleamed from item (A) and Proposition 5.1.

4 Proof of the Main Theorem

In this section, we provide a proof of the principal result of this work. Namely: If the

initial N0 is in the vicinity of the uniform state, and the latter is “sufficiently stable”

then the subsequent dynamics is characterized by exponential convergence to this state.

4.1 Convexity Estimates

In this subsection, we aggregate all the results concerning convexity of the function

Gµ(·) which will be used in the proof of the main theorem. First, it is seen that if

W is of positive type then Gµ(·) is always a convex functional of N for all µ. But, it

is also known that such circumstances foreclose any possibility of a phase transition.

However, even here, the rate of convergence to equilibrium is still of interest. More

pertinently in the general cases under study, it is not unreasonable to assume that if

eµ is sufficiently small and overall the fluid is reasonably homogeneous with a density

not too far from the uniform state that some local convexity properties should ensue.
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First, recall the definition of (the density of) the uniform state m0 which is the

solution to m0 = eµ−wm0 with w being the integral of W , as described following Eq. (3).

In what follows, instead of using µ – which is conceivably large and negative – as our

parameter we will use the quantity m0 = m0(µ) as our (small) parameter.

Proposition 4.1 Let Nt ∈ C 2 be a classical solution of Eq. (8). Let κ be any number

such that 0 < κ < 1
2 and suppose that at time t0 ≥ 0 the density Nt0 satisfies the

pointwise bounds

κm0 < Nt0(x) <
1

κ
m0.

Then, if m0 is sufficiently small, this condition persists for all time t > t0.

Proof. Examining Eq. (8) and recalling that we can reason classically, let us assume

that x] is a point of maximum or minimum. Then at x = x], we have

∂Nt(x])

∂t
≥ Nt∇2wNt −

[
Nte

− 1
2

(µ−wNt ) − e+ 1
2

(µ−wNt )
]

for a minimum and with the opposite inequality if x] is a maximum.

Now we claim that for m0 sufficiently small we have, for all x satisfying κm0 ≤

Nt(x) < 1
κm0, the estimate

−κm0e−
1
2

(µ−wNt ) + e+ 1
2

(µ−wNt ) ≥ κm
1
2
0

and

−1

κ
m0e−

1
2

(µ−wNt ) + e+ 1
2

(µ−wNt ) ≤ −m
1
2
0 .

Indeed, since m
− 1

2
0 = e−

1
2

(µ−wm0), the second display amounts to the inequality e
1
2

(wNt−wm0)−

κe−
1
2

(wNt−wm0) ≥ κ and we can use wNt ≥ − 1
κw0m0 (where w0 is the integral of |W |)

while the first display reduces to e
1
2

(wm0−wNt ) − κe−
1
2

(wm0−wNt ) ≥ κ and we can also

use wNt ≤ 1
κw0m0. The claimed result is now manifest for m0 sufficiently small.
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Let us suppose then that at some time t], for the first time, the density achieves

the value 1
κm0 and this occurs at the point x = x] – which is its maximum. Then we

would have (with w2 being the integral of |∇2W |)

∂Nt](x])

∂t
≤ −m

1
2
0 +

1

κ
m0w2,

which is strictly negative for m0 sufficiently small. While this immediately implies that

at the point x], the density can grow no bigger, it actually implies, by continuity, that

such happenstance could never occur in the first place: At t = t−] before the density

at x = x] achieved 1
κm0, the derivative was already negative.

Similar considerations apply – for m0 sufficiently small – if we investigate the first

time that the density has fallen as low as κm0.

Consider, then, the convex set Bκ ⊆ B consisting of those densities which satisfy the

bounds featured in Proposition 4.1. (It is noted that the parameters of the upper and

lower bounds need not be related. However, the condition is natural for the variable

Ψ = logN .) Our next claim is that if κm0 is sufficiently small then the functional Gµ(·)

restricted to Bκ is convex:

Proposition 4.2 For m0/κ < ϑ] where

1

ϑ]
= max

k

{
|Ŵ (k)| | Ŵ (k) < 0

}
,

the functional Gµ(·) restricted to Bκ is convex. And, therefore, N ≡ m0 is the unique

minimizer in Bκ. In the above we may take ϑ] = ∞ if the interaction is of positive

type.

Proof. Let NA, NB be temporary notation for densities in Bκ and similarly, let us
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define Ns := (1− s)NA + sNB and R := NB −NA. A direct calculation shows

d2Gµ(Ns)

ds2
=

∫
TdL

R2

Ns
dx+

∫
TdL×T

d
L

W (x− y)R(x)R(y)dxdy.

The first term on the right is larger than (κ/m0) · ‖R‖2L2 and as for the second, we have∫
TdL×T

d
L

W (x− y)R(x)R(y)dxdy =
1

Ld

∑
k

Ŵ (k)|R̂(k)|2 ≥ − 1

ϑ]
· ‖R‖2L2

and the primary statement is proved. The secondary statement is immediately clear

since N ≡ m0 is always a stationary point and the convexity that was just proved is

actually strict.

Remark 4.3. We remark that notwithstanding factors of order unity – e.g., κ – the

estimates here (and presumably those in Proposition 4.1) are reasonably sharp. Indeed,

m0 = ϑ] is the point where the stationary solution Nt ≡ m0 is linearly unstable and,

translating the results of [5] to the current context, when m0 = ϑT < ϑ], already there

are non–trivial minimizers for Gµ(·).

4.2 Proof of the Main Theorems

Proof of Theorem 1.1. Let t > 0 and T > t. Let κ′ > κ. By Theorem 3.8 we may

consider h’s sufficiently small so that throughout (0, T ), the actual continuum solution

Nt and the discretization N
[h]
t differ only slightly in e.g., the D1–norm so that for all

t ∈ [0, T ], we have N
[h]
t ∈ Bκ. It follows by Proposition 4.2 that Gµ(·) is convex for

these N
[h]
t ’s.

In the following, we will examine one iteration of the process at fixed h. To avoid

clutter, we will again employ the (inconsistent) notation that N0 is the initial density

and N1 is the final density for this step. Let us define, for λ > 0

M
(0)
λ := (1− hλ)N0 + hλm0

44



so that M
(0)
λ − N0 = hλ(m0 − N0). Let us also define Q to be the potential which

pushes N0 all the way to m0 in unit time under the approximate dynamics:

m0 −N0 =: ∇ · (N0∇Q)− ΩN0Q.

Further, the approximate distance (all the way) to m0 is given by

D2
A(N0,m0) =

∫
TdL
N0|∇Q|2 + ΩN0Q

2 dx.

It is underscored, informally, that D2
A(N0,m0) – and Q – are of order unity relative to

h with h� 1. We have (since the relevant equations are linear)

D2
A(N0,M

(0)
λ ) = h2λ2 · D2

A(N0,m0).

We now adjust λ so that this distance is exactly the distance which is traveled

under the auspices of the JKO type process:

h2λ2 · D2
A(N0,m0) = D2

A(N0, N1).

Now since we must have JA(N0, N1) ≤ JA(N0,M
(0)
λ ), it immediately follows that

Gµ(N1) ≤ Gµ(M
(0)
λ ). Using convexity of Gµ(·), we have

Gµ(N1)− Gµ(m0) ≤ (1− hλ) · [Gµ(N0)− Gµ(m0)] .

Thus, if we can get λ uniformly bounded below for an indefinite number of iterations

of the process, then in the standard (discretization) notation, the above becomes

Gµ(N
[h]
(k+1)h)− Gµ(m0) ≤ (1− hλ) ·

[
Gµ(N

[h]
kh )− Gµ(m0)

]
(35)

and so in the h → 0 limit, Gµ(Nt) − Gµ(m0) ≤ e−λt · [Gµ(N0)− Gµ(m0)]. We turn our

investigations to λ. Let us start with some preliminary estimates on D2
A(N0,m0).
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Claim 1. We have

D2
A(N0,m0) ≤ g2 · ‖N0 −m0‖2L2 , (36)

where g2 := (κm0)−1/2.

Proof of Claim. We start with the identities

−
∫
TdL

(m0 −N0)Q dx = D2
A(N0,m0) =

∫
TdL
N0|∇Q|2 + ΩN0Q

2 dx. (37)

So, using inequalities on both ends:

‖N0 −m0‖L2 · ‖Q‖L2 ≥
∫
TdL

ΩN0Q
2 dx. (38)

It is now claimed that, pointwise,

ΩN ≥ N
1
2 . (39)

Indeed, this follows from the known inequality (a− b)/ log(a/b) ≥
√
ab, but in any case

(for completeness) we write

ΩN =
N

1
2

ΦN

(
N

1
2 e−

1
2

(µ−wN ) − 1

N
1
2

e
1
2

(µ−wN )

)
= N

1
2

sinh 1
2ΦN

1
2ΦN

≥ N
1
2 .

Thus the bound in Eq. (38) may be replaced by

‖N0 −m0‖L2 · ‖Q‖L2 ≥ (κm0)
1
2 · ‖Q‖2L2 ,

i.e.,

‖Q‖L2 ≤
1

(κm0)
1
2

· ‖N0 −m0‖L2 .

Putting this back into Eq. (37) we acquire

D2
A(N0,m0) ≤ 1

(κm0)
1
2

· ‖N0 −m0‖2L2 = g2 · ‖N0 −m0‖2L2

as stated. �
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From Claim 1 we have

h2λ2 · g2‖N0 −m0‖2L2 ≥ h2λ2 · D2
A(N0,m0) = D2

A(N0,M
(0)
λ ) = D2

A(N0, N1), (40)

so our goal will be achieved if we can show that D2
A(N0, N1) is of the same order as

h2‖N0 −m0‖2L2 . To this end, we will now consider

M
(1)
θ := (1− hθ)N1 + hθm0.

The strategy here is to show that if D2
A(N0, N1) were not of the correct order of mag-

nitude (according to the above stated goal) then M
(1)
θ would be a better minimizer for

JA(N0, ·). In what follows, let us use the version of JA in which the current value of

the free energy is subtracted off:

JA(N0,M
(1)
θ ) =

1

2
D2
A(N0,M

(1)
θ ) + h

[
Gµ(M

(1)
θ )− Gµ(N0)

]
.

We start with an upper bound on D2
A(N0,M

(1)
θ ). To this end, it is noted that since

M
(1)
θ −N0 = (1− hθ)(N1 −N0) + hθ(m0 −N0),

the driving field which achieves M
(1)
θ is given by (1 − hθ) · hΦN1 + hθQ. Therefore

D2
A(N0,M

(1)
θ ) = (1−hθ)2·D2

A(N0, N1)+h2θ2·D2
A(N0,m0)+2h2θ(1−hθ)·〈〈∇ΦN1 ,∇Q〉〉N0 .

We will bound the last term by 2hθ(1−hθ) ·DA(N0, N1)DA(N0,m0): This follows from

the Cauchy–Schwarz inequality since e.g., 〈〈∇Q,∇Q〉〉N0 = D2
A(N0,m0). (We note that

one factor of h has been absorbed into the term DA(N0, N1).) I.e., we have the square

of the triangle inequality:

D2
A(N0,M

(1)
θ ) ≤ (1− hθ)2 · D2

A(N0, N1) + h2θ2 · D2
A(N0,m0)

+ 2hθ(1− hθ) · DA(N0, N1)D(N0,m0)

Meanwhile, by the convexity from Proposition 4.2,

Gµ(M
(1)
θ ) ≤ (1− hθ) · Gµ(N1) + hθ · Gµ(m0).

47



Putting the previous two displays together and subtracting off JA(N0, N1), we have

JA(N0,M
(1)
θ )− JA(N0, N1)

=
1

2

[
D2
A(N0,M

(1)
θ )− D2

A(N0, N1)
]

+ h
[
Gµ(M

(1)
θ )− Gµ(N1)

]
≤ hθ · DA(N0, N1)DA(N0,m0) +

1

2
h2θ2 · [DA(N0,m0)− DA(N0, N1)]2

− hθ ·
[
D2
A(N0, N1) + h(Gµ(N1)− Gµ(N0))

]
+ h2θ · [Gµ(m0)− Gµ(N0)] .

Since N1 is a minimizer, the right hand side is nonnegative. In particular this is so

when we divide by hθ and take the θ → 0 limit. Thus

h[Gµ(N0)− Gµ(m0)] ≤ DA(N0, N1)DA(N0,m0)

−
[
D2
A(N0, N1) + h(Gµ(N1)− Gµ(N0))

]
.

(41)

Next we have the following estimate relating Gµ(N0)− Gµ(m0) and ‖N0 −m0‖2L2 :

Claim 2. Under the conditions on m0 and κ in the statement of this theorem, there

is a σ = σ(m0, κ) > 0 such that

Gµ(N0)− Gµ(m0) ≥ σ‖N0 −m0‖2L2 .

Proof of Claim. This, it turns out, is a recapitulation of (the convexity) Proposition

4.2. If we write N0 = m0 + (N0 − m0) we can expand the free energy in powers of

N0 − m0. The first order term vanishes by stationarity while the interaction piece is

exact at the quadratic order. Now, pointwise,

(m0 + (N0 −m0)) · log(m0 + (N0 −m0))

= m0 logm0 + linear piece +
1

2
· (N0 −m0)2

νN0 + (1− ν)m0

where ν ∈ [0, 1] depends on the value of N0(x). Thus we may write

Gµ(N0)− Gµ(m0)

=
1

2

[∫
TdL

R2
0(x) dx

ν(x)N0 + (1− ν(x))m0
+

∫
TdL×T

d
L

W (x− y)R0(x)R0(y) dxdy

]
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with R0(x) being temporary notation for N0(x)−m0. The conclusion follows with

σ =
1

2

(
κ

m0
− 1

ϑ]

)
.

The stated claim has been established. �

Remark. For future reference we note that the estimates in Claim 1 and Claim 2 apply

to any density N ∈ Bκ and not just N0. We also note that the constant g2 = (κm0)−1/2

does not depend on the particulars of N0.

Thus, dropping the D2
A(N0, N1) term from Eq. (41) and using Eq. (36), we get

hσ‖N0 −m0‖2L2 + h(Gµ(N1)− Gµ(N0)) ≤ DA(N0, N1) · g‖N0 −m0‖L2 . (42)

Now were it not for the small term h(Gµ(N1) − Gµ(N0)) on the left, we would obtain

a lower bound of hσ
g · ‖N0 −m0‖L2 for DA(N0, N1) which by Eq. (40) would imply

λ ≥ σ

g2
:= λ†.

Since the small free energy difference term will appear at each stage of the iteration

and there are of order h−1 steps altogether, let us write Eq. (42) in the form that it

would appear without the abbreviations:

hσ‖N [h]
jh −m0‖2L2 + h

(
Gµ(N

[h]
(j+1)h)− Gµ(N

[h]
jh )
)

≤ gDA
(
N

[h]
jh , N

[h]
(j+1)h

)
‖N [h]

jh −m0‖L2 .

Let us stipulate that, necessarily, for all times t′ < t, Nt′ 6= m0 (indeed, otherwise

there would be nothing to prove). Thus, it is clear that

ε := inf
j,h:hj≤t

‖N [h]
jh −m0‖2L2

is strictly positive. We shall only consider h’s which satisfy h < ε2 and thus the above

generalization of Eq. (42) in combination with Eq. (40) yields the estimate

hλj+1 ≥
DA
(
N

[h]
hj , N

[h]
h(j+1)

)
g‖N [h]

hj −m0‖L2

≥

[
hσ

g2
+
h

1
2

g2

(
Gµ(N

[h]
h(j+1))− Gµ(N

[h]
hj )
)]

.
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(In the above we are using that Gµ(N
[h]
h(j+1))−Gµ(N

[h]
hj ) ≤ 0 which is clear since otherwise

N
[h]
hj would’ve been a better minimizer for JA(N

[h]
hj , ·) than N

[h]
h(j+1).)

Recalling the discussion surrounding the display labeled (35) (and iterating) we

now have the estimate

Gµ(N
[h]
(k+1)h)− Gµ(m0) ≤ [Gµ(N0)− Gµ(m0)] ·

k∏
j=1

(1− hλj).

We bound the product (recall that λ† = σ/g2) as follows:

k∏
j=1

(1− hλj)

≤ (1− hλ†)k ·
k∏
j=1

(
1− h

1
2

g2(1− hλ†)

(
Gµ(N

[h]
hj )− Gµ(N

[h]
h(j−1))

))

≤ (1− hλ†)k · Exp

− h
1
2

g2(1− hλ†)

k∑
j=1

(
Gµ(N

[h]
hj )− Gµ(N

[h]
h(j−1))

) . (43)

The sum in the exponent is just the current free energy drop which may be bounded

uniformly in k by the total free energy drop, namely Gµ(m0) − Gµ(N0), and the pre–

factor of h
1
2 causes this factor in the exponent to vanish in the h → 0 limit. Thus, as

claimed, when we take h→ 0

Gµ(Nt)− Gµ(m0) ≤ [Gµ(N0)− Gµ(m0)] · e−λ†t.

By the result displayed in Claim 2 (applied to Nt instead of N0) a similar estimate

holds for ‖Nt −m0‖2L2 .

Finally, we claim that in essence, the derivation featured above also holds for the

actual D–distance:

Corollary 4.4 With all notation as before, we have

D2(Nt,m0) ≤ g2

σ
[Gµ(N0)− Gµ(m0)] · e−λ†t.
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Proof. Let N ∈ Bκ and consider

N•s = (1− s)N + sm0.

Let Q•s denote the corresponding advective potential

∂N•s
∂s
≡ m0 −N = ∇ · (N•s∇Q•s)− ΩN•sQ

•
s.

(Clearly, Q•s depends on s.) Now going this route from N → m0 will not necessarily

minimize the actual distance functional:

D2(N,m0) ≤
∫ 1

0
〈〈∇Q•s,∇Q•s〉〉N•s ds.

Therefore an upper bound on the integrated inner product constitutes an upper bound

on the actual distance.

To this end, noting that N•s ∈ Bκ, similar reasoning as in the proof of Claim 1

yields ‖Q•s‖L2 ≤ g2 · ‖N −m0‖L2 . On the other hand,

‖N −m0‖L2 · ‖Q•s‖L2 ≥ −
∫ 1

0
ds

∫
TdL

(N −m0)Q•s dx =

∫ 1

0
〈〈∇Q•s,∇Q•s〉〉N•s ds.

Combining the above estimates, we thus obtain an analogous conclusion to Claim 1:

D2(N,m0) ≤ g2 · ‖N −m0‖2L2 .

By Claim 2, g2 · ‖N −m0‖2L2 ≤ g2

σ · [Gµ(N)− Gµ(m0)]. Thence we may conclude using

iteration as in the proof of Theorem 1.1 that

D2(Nt,m0) ≤ g2

σ
[Gµ(N0)− Gµ(m0)] · e−λ†t.

Proof of Theorem 1.2. The establishment of D(·, ·) as a bona fide distance is found in

Appendix B and the convergence of the JKO type scheme is the content of Theorem

3.8. Finally, Corollary 4.4 establishes the stated convergence for the distance D(·, ·).

51



5 Appendix A

In this appendix, we analyze the discrete time evolution of the fluid density as given in

Eq. (25). While this equation produces N(k+1)h from Nkh, in order to avoid clutter, we

will set k = 0 – and introduce various other abbreviations to be described shortly. The

ultimate result depends only on properties of Nk (aka N0) primarily the D2–norm

(a Fourier norm) introduced before and again described below. Thus, the principal

difficulty will be to show that the relevant properties are preserved under iteration.

And, it turns out, it is too much to expect that this is achieved by having the incre-

mental changes in e.g., N0, ∇2N0 etc., to always be of order h. Thus a somewhat

delicate (albeit presumably standard) “cancelation” must be exhibited in the course of

our arguments.

5.1 The Full Equation

Equation (25) is most conveniently expressed in terms of the variable Ψ := logN . For

the purposes of this appendix, we will abbreviate Ψ0 := logN0 and w0 := W ∗N0 with

similar notational conventions when 0–subscripts are replaced by 1’s. In this language,

Eq.(25) reads

eΨ1−Ψ0 − 1 = h[∇2Ψ1 +∇2w1 +∇Ψ1 · ∇Ψ0 +∇w1 · ∇Ψ0]

− h[e−Ψ0ΩN0(Ψ1 + w1 − µ)].

(44)
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Introducing hψ := Ψ1−Ψ0, hwψ := w1−w0 = W ∗ (eΨ0)(ehψ−1) and Ω0 := e−Ψ0ΩN0 ,

Eq. (44) now reads

ehψ − 1

h
= h∇2ψ

+ [∇2Ψ0 + |∇Ψ0|2 +∇2w0 +∇w0 · ∇Ψ0 − Ω0(Ψ0 + w0 − µ)]

+ h[∇2wψ +∇wψ · ∇Ψ0 +∇ψ · ∇Ψ0 − Ω0(ψ + wψ)].

(45)

The advantage of using the Ψ–variables is now manifest: On the right hand side of the

equation, all the non–linearities are encoded into the function itself and do not involve

the derivatives. Note further that we have separated the Ψ0–terms from the ψ–terms.

5.2 Norms

Our analyses will be essentially classical – although it is conceivable that with greater

effort, a more general treatment would be possible. In any case we will start with an

assumption on Ψ0 which is slightly stronger than H1. Specifically we will require that

Ψ0 ∈ D2 as described below:

Let f : TdL → R have Fourier coefficients f̂(k). Then

‖f‖D0 :=
1

Ld

∑
k

|f̂(k)|

and, if this is finite, then we say f ∈ D0. In general,

‖f‖Dm :=
1

Ld

∑
k

|k|m|f̂(k)|

defines the class Dm. It is noted that these norms obey the usual inequalities, e.g.,

‖f‖2D1
≤ ‖f‖D2‖f‖D0 . These norms also have derivation properties, e.g.,

‖fg‖D1 ≤ ‖f‖D1‖g‖D0 + ‖f‖D0‖g‖D1 .
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Our precise assumption is that Ψ0 ∈ D2 with a bound on the norm that does not

depend on h. The latter is emphasized because, e.g., for the time interval [0, T ], we must

accommodate the order of Th−1 iterations of Eq. (25). Of course a single application

is readily accomplished with the result Ψ1 ∼ Ψ0 + h ·
[
∇2Ψ0 + |∇Ψ0|2 + · · · − Ω0w0

]
.

But this perturbative result, in and of itself, cannot be expected to get us through

too many iterations. For us, among other small matters, the crucial requirement is to

show that the actual Ψk’s also have D2–norms which, for fixed T , is uniformly bounded

independent of h (provided that h is sufficiently small) in order that the above heuristic

can be continued.

The above notions will be placed on a more formal footing. Let us amalgamate into

a set D all the relevant input constants, so the initial D takes the form:

D0 = {‖Ψ0‖D0 , ‖Ψ0‖D2 , v0, . . . , v4, ‖W‖D2}

where the vm are given by vm := supk |Ŵ (k)‖k|m and are assumed to be finite for

m ≤ 4. These are regarded as fixed while the time step parameter is to be treated as

a variable, albeit “small”. In the course of our analysis, various numbers will emerge

which will depend on D0 but are uniformly bounded with respect to h. Then, these

numbers are bounded provided the elements of D0 are bounded. The time–step h itself

will be allowed to take on any value smaller than some h0 which ultimately does depend

on the initial D0. But, again, h0 will be bounded (below) provided the elements of

D0 are bounded (above). These numbers provide us with the updated version of D,

denoted D1, which will also have elements which have only incremented by the order

of h. We will continue this way to D2,D3, etc., all of which, at least for a while,

may be regarded as bounded independently of h. Thence, the whole process can be

continued throughout some finite interval [0, T ], leading to a set D` for each time step
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` so that each element in D` is uniformly bounded. This way we have the order of

h−1T iterations, with bounds that will depend only on the initial D0 and, perhaps, T .

Of course only two of the elements of D are destined to change; later these will

be referred to as the mutable elements. Anticipated but conspicuously absent from

the mutable elements of D is the quantity ‖Ψ0‖D1 . The reason is economical rather

than esoteric: Below begins the D0–analysis followed in Subsection 5.4 by the D2–

analysis which is still more substantial. In principal, a D1 subsection could have been

written which, presumably, would have been intermediate. In practice, we are (at

first only) interested in bounds which permit iteration of the process for some positive

macroscopic time. Therefore it proves to be sufficient, even if less efficient, to use

‖Ψ0‖
1
2
D2
‖Ψ0‖

1
2
D0

as an upper bound for ‖Ψ0‖D1 in the places where such a bound on

this quantity is required.

5.3 Preliminary Analysis

We start off with a bound on the D0–norm of ψ:

Proposition 5.1 There exist h2 > 0, b0 > 0 such that for all h ≤ h2, there is a

solution ψ to Eq. (45) with ‖ψ‖D0 ≤ b0. Further, both b0 and h2 depend only on D0

and are uniformly bounded for bounded ranges of these elements.

Proof. We start with a rewrite of Eq. (45) so that it takes the form

ψ − h∇2ψ = A+ hBψ −
1

h
E2(hψ) (46)

where in the above E2(x) =
∑

m≥2
xm

m! (and, for future reference, similarly for E1)

and A and Bψ correspond to the appropriate bracketed terms in the above mentioned
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equation:

A = ∇2Ψ0 + |∇Ψ0|2 +∇2w0 +∇w0 · ∇Ψ0 − Ω0(Ψ0 + w0 − µ)

Bψ = ∇2wψ +∇wψ · ∇Ψ0 +∇ψ · ∇Ψ0 − Ω0(ψ + wψ).

Thus we may write

ψ = L−1
h

[
A+ hBψ −

1

h
E2(hψ)

]
:= Lh(ψ) (47)

where Lh := 1− h∇2. We estimate the terms one at a time adding all the results.

Most terms are handled easily with the neglect of L−1
h . E.g.,

‖L−1
h (∇2Ψ0)‖D0 =

1

Ld

∑
k

1

1 + hk2
· k2|Ψ̂0| ≤

1

Ld

∑
k

k2|Ψ̂0| = ‖Ψ0‖D2 .

(We note here that strictly speaking since k is a vector, we should write |k|2 in the

above display, but we have suppressed these absolute values and will continue to do so

when the context makes the meaning clear.) As a further illustration we have

‖L−1
h ∇

2w0‖D0 ≤ ‖w0‖D2 ≤ v2‖eΨ0‖D0 ≤ v2e‖Ψ0‖D0 .

All terms in A can be handled this way. Since the quantities stemming from the A

term are bounded by a function of elements of D0, we have the same statement for

L−1
h (A) and so we may write ‖L−1

h (A)‖D0 ≤ A0 with

A0 = ‖Ψ0‖D2 + ‖Ψ0‖2D1
+ v2e

‖Ψ0‖D0 + v1e‖Ψ0‖D0 · ‖Ψ0‖D1

+ V0 · (‖Ψ0‖D0 + v0e‖Ψ0‖D0 + µ).

(48)

In the above, V0 is a bound on ‖Ω0‖D0 in terms of the elements of D0 which we shall not

make explicit. In any case, all terms have been entirely bounded in terms of quantities

from D0.

The Bψ–terms as well as the final term now involve ψ itself. Nevertheless, most of

these terms are estimated in a straightforward fashion. E.g.,

1

h
‖L−1

h E2(hψ)‖D0 ≤
1

h
E2(h‖ψ‖D0)
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and similarly for most of the other Bψ–terms. For the ∇ψ · ∇Ψ0 term, in order to

ensure that no ‖ψ‖D1 appears in the estimate, we use

‖hL−1
h (∇ψ · ∇Ψ0)‖D0 ≤

1

L2d

∑
k,q

∣∣∣∣ h

1 + hk2

(
qΨ̂0(q)

)
·
(

(k − q)ψ̂(k − q)
)∣∣∣∣

≤ h‖ψ‖D0‖Ψ0‖D2 +
1

L2d

∑
k,q

h|k|
1 + hk2

· |qΨ0(q)| · |ψ̂(k − q)| (49)

≤ ‖ψ‖D0 ·
(
h‖Ψ0‖D2 +

1

2
h1/2‖Ψ0‖D1

)
,

where to handle the final term in Eq. (49) above, we have used h|k|
1+hk2

≤ 1
2h

1
2 .

We list bounds on the remaining Bψ–terms below:

‖hL−1
h (∇2wψ)‖D0 ≤ ‖wψ‖D2

‖hL−1
h (∇wψ · ∇Ψ0)‖D0 ≤ ‖wψ‖D0 ·

(
h‖Ψ0‖D2 +

1

2
h1/2‖Ψ0‖D1

)
‖hL−1

h (Ω0ψ + wψ))‖D0 ≤ hV0 · (‖ψ‖D0 + ‖wψ‖D0)

and, as before, we may write final estimates for the wψ–terms:

‖wψ‖D0 ≤ v0e
‖Ψ0‖D0 · 1

h
E1(h‖ψ‖D0), ‖wψ‖D2 ≤ v2e

‖Ψ0‖D0 · 1

h
E1(h‖ψ‖D0).

Sorting all these terms, the “bound” now takes the form

‖ψ‖D0 = ‖Lh(ψ)‖D0 ≤ A0 + hβ0‖ψ‖D0 + b0h
1
2 ‖ψ‖D0

+ hG(‖ψ‖D0) + h1/2g(‖ψ‖D0)

(50)

where

β0 = ‖Ψ0‖D2 + V0, b0 =
1

2
‖Ψ0‖D1 ,

G(‖ψ‖D0) = v0e
‖Ψ0‖D0 (‖Ψ0‖D0 + V0) · 1

h
E1(h‖ψ‖D0)

+ v2e
‖Ψ0‖D0 · 1

h
E1(h‖ψ‖D0) +

1

h2
E2(h‖ψ‖D0)

(51)

and

g(‖ψ‖D0) =
1

2
v0e
‖Ψ0‖D0‖Ψ0‖D1 ·

1

h
E1(h‖ψ‖D0). (52)
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All constants and functions in the estimate depend (uniformly) only on the param-

eters in D0 and the quantities G and g appear to be well–behaved for h small:

1

h
E1(h‖ψ‖D0) ≈ ‖ψ‖D0 ,

1

h2
E2(h‖ψ‖D0) ≈ 1

2
‖ψ‖D0 .

Importantly, the quantity ‖ψ‖D1 does not appear in the estimate. Thus, we may

tentatively conclude that ‖ψ‖D0 . A0. However, it is noted that given the form of the

right hand side of the display in Eq. (50) there is also the possible interpretation of a

trivial (i.e., infinite) bound, an issue we now address.

Let us denote the upper bound on ‖ψ‖D0 from Eq. (50) by Ξh(‖ψ‖D0) and let us

examine the corresponding recursive equation

ζ0 = Ξh(0) = A0, ζk+1 = Ξh(ζk). (53)

If the iterates were to approach a fixed point at x, we would have

x = Ξh(x) = A0 + h1/2 [b0x+ g(x)] + h [β0x+G(x)] .

Clearly, for h = 0, the equation above is satisfied at x = A0. For h > 0, starting

from x = 0, the right hand side would still exceed the left hand side till x = A0 and

certainly the right hand side would dominate for very large values of x (indeed, the

function Ξ(h, x) is increasing and convex in x because G(x) and g(x) are both convex).

However, we claim that for h sufficiently small, the two functions are guaranteed

to cross at some point after A0:

Claim. For any η > 0, there is some hη > 0 such that for all h < hη, there is some

xh < A0 + η such that Ξh(xh) = xh.

Proof of Claim. Observing that Ξ′h(x) is increasing it follows that for every η > 0,

Ξh(A0 + η) ≤ A0 + Ξ′h(A0 + η) · (A0 + η).
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Thus if we choose hη > 0 sufficiently small so that Ξ′hη(A0 + η) · (A0 + η) < η, then

Ξhη(A0 +η) < A0 +η (we note also that Ξ′h(x) is monotonically decreasing in h so once

some hη is found we have the result for all h < hη). Since Ξh(A0) > A0, the required

fixed point exists by continuity of x− Ξh(x).

It follows from the convexity of Ξh and from the claim that there is some h1 > 0

such that for h < h1 there is a ζ] = ζ](h) which is the unique stable fixed point of

Eq. (53) so that if ζk < ζ] then ζk < ζk+1 < ζ] and limk→∞ ζk = ζ] – it is clear

that ζk < ζk+1 = Ξh(ζk) since for x < ζ] we have Ξh(x) > x; on the other hand, by

monotonicity of Ξh, ζk+1 = Ξh(ζk) < Ξ(ζ]) = ζ].

Recall from Eq. (47) that we have ψ = Lh(ψ). Thus, we may define the iterates

ψ0 = L−1
h (A0), ψk+1 = Lh(ψk)

so that by Eq. (50) and the nature of ζ], we have that for all k,

‖ψk+1‖D0 = ‖Lh(ψk)‖D0 ≤ Ξh(‖ψk‖D0) < ζ].

Let ψ be a weak limit of the ψk’s. It remains to identify ψ with the object featured in

Eq. (46).

To this end we consider δk := ψk − ψk−1. Since

Lh(ψ) = L−1
h

[
A+ hBψ −

1

h
E2(hψ)

]
,

δk+1 = Lh(ψk)−Lh(ψk−1) = h(Bψk −Bψk−1
)− 1

h
[E2(hψk)− E2(hψk−1)] .

From our previous estimates, it follows that

‖δk+1‖D0 ≤ b0h1/2‖δk‖D0 + hβ0‖δk‖D0 + hG̃(‖δk‖D0 , ‖ψk−1‖D0)

+ h1/2g̃(‖δk‖D0 , ‖ψk−1‖D0)

:= h1/2‖δk‖D0 · Γh(‖δk‖D0 , ‖ψk−1‖D0),

(54)
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where G̃(·) and g̃(·) are defined analogously as G(·) and g(·) in Eq. (51) and (52),

corresponding now to estimates involving differences of ψk’s, e.g.,

h(wψk − wψk−1
) = W ∗ (eΨ0+hψk−1)(ehδk − 1).

Since G̃(‖δk‖D0 , ‖ψk−1‖D0) and g̃(‖δk‖D0 , ‖ψk−1‖D0) are bounded by definitive con-

stants provided that their arguments are, so is the quantity Γh(‖δk‖D0 , ‖ψk−1‖D0). It

follows from Eq. (54) that δk tends to zero as k tends to infinity for all h sufficiently

small.

More precisely, consider ζ]] which is the limit as h→ h1 of ζ](h). Let h2 be defined

by

[h2]
1
2 × [ sup

h<h1
b<ζ]],a<2ζ]]

Γh(a, b)] = 1.

By Eq. (54), the above choice of h2 implies that for h < h2, there is some αh < 1 such

that ‖δk+1‖D0 < αh‖δk‖D0 for all k. It follows that ψk converges (strongly in D0) to

the ψ given in Eq. (47) and for h < h2 we have (for all j) the ψj ’s and the limiting ψ

are bounded in D0 by ζ](h2). Moreover, all parameters, h1, h2 . . . ζ](h2) depend only

on the parameters of D0 and are uniformly controlled by these elements.

5.4 Advanced Analysis

The situation concerning the D2–norm of ψ will not be as straightforward as that of

the above – indeed, there is no hope for a result analogous to Proposition 5.1. In

particular, let us investigate the very first term

ψ? := L−1
h (∇2Ψ0). (55)

While it is clear that ‖ψ?‖D2 < ∞, this norm might well be divergent as h ↓ 0; e.g.,

‖hψ?‖D2 could be a sublinear power of h. However, as will be demonstrated, if Ψ0 has
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this behavior, these circumstances are actually beneficial. Indeed, due to the positivity

of the operator −∇2, adding ψ? would reduce the overall magnitude of the Fourier

coefficients: Explicitly, let us define the “preliminary correction”

Ψ? := Ψ0 + hψ?.

Then

Ψ̂?(k) = Ψ̂0(k)− hk2

1 + hk2
Ψ̂0(k) =

Ψ̂0(k)

1 + hk2
. (56)

i.e., the magnitude of every non–zero mode has been reduced.

Hence, the task at hand will be to show that the rest of ψ does not disrupt this

beneficial effect. Specifically, defining

ψ• := ψ − ψ?,

our aim is to show that the difference, ‖ψ•‖D2 − ‖ψ?‖D2 , is either negative or of order

unity. We remark that in contrast to the preceding analysis, there is no reason to expect

matching with powers of h. Thus, we will be working directly with hψ?, hψ•, etc., even

though, at times, appearances of h, e.g., multiplying both sides of an equation, may

seem redundant.

The preliminary challenge arises from the inhomogeneous terms. We define r• and

s• via:

hr• := hL−1
h (|∇Ψ0|2) and hs• := hL−1

h (∇Ψ0 · ∇w0).

Our first goal is an estimate on their D2 norms. We start by invoking the relevant

length scale for these problems:

Definition 5.2. Let p0 = p0(h) be such that

1

Ld

∑
p:|p|≥p0

|pΨ̂0(p)| ≥ h

61



while without the last shell,

1

Ld

∑
p:|p|>p0

|pΨ̂0(p)| < h.

Claim A1. There is an a depending only on D0 such that if p0 > ah−
1
2 then

‖hψ?‖D2 ≥ 2 (‖hr•‖D2 + ‖hs•‖D2) .

Proof of Claim. We first note that, a priori, ‖hr•‖D2 and ‖hs•‖D2 do not exceed the

order of h
1
2 . Indeed, we write

hk2r̂•(k) = − 1

L2d

hk2

1 + hk2

∑
q

qΨ̂0(q) · (k − q)Ψ̂0(k − q) (57)

so, taking absolute values etc., and bringing one factor of k inside the sum,

|hk2r̂•(k)| ≤ 1

L2d

h|k|
1 + hk2

∑
q

(
q2|k − q|+ (k − q)2|q|

)
· |Ψ̂0(q)‖Ψ̂0(k − q)|.

Using h
1
2 |k|/(1+hk2) ≤ 1

2 , and summing over k, we are left with 1
2h

1
2×2×‖Ψ0‖D1‖Ψ0‖D2 :

‖hr•‖D2 ≤ h
1
2 · ‖Ψ0‖D1‖Ψ0‖D2 .

Similarly,

‖hs•‖D2 ≤
1

2
h

1
2 · (‖Ψ0‖D1‖w0‖D2 + ‖Ψ0‖D2‖w0‖D1)

On the other hand,

‖hψ?‖D2 ≥
1

Ld

∑
k:|k|≥p0

hk2

1 + hk2
· k2|Ψ̂0(k)|

≥ 1

Ld
hp3

0

1 + hp2
0

∑
k:|k|≥p0

|k‖Ψ̂0(k)| ≥ h2p3
0

1 + hp2
0

.

Thus, if p0 ≥ ah−
1
2 where a is given by

a3

1 + a2
= 2

[
‖Ψ0‖D1‖Ψ0‖D2 +

1

2
(‖Ψ0‖D1‖w0‖D2 + ‖Ψ0‖D2‖w0‖D1)

]
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the claim is established. �

We may thus proceed under the assumption that p0 ≤ ah−
1
2 since otherwise, the

r• and s• terms are well in hand.

Claim A2. Our next claim is that, under the assumption p0 ≤ ah−
1
2 , both r• and s•

admit the bounds

‖hr•‖D2 ≤ Cr‖hL−1
h Ψ0‖D3 + hcr

‖hs•‖D2 ≤ Cs‖hL−1
h Ψ0‖D3 + hcs (58)

where Cr, . . . , cs are constants which depend only on D0.

Proof of Claim. Let us proceed with the analysis of Eq. (57) taking absolute values

etc., and summing over k at fixed q. First, we investigate the region where |k−q| > p0.

Here we may use hk2/[1 + hk2] < 1 leaving us with

1

Ld
|qΨ̂0(q)| · 1

Ld

∑
k:|k−q|>p0

|(k − q)Ψ̂0(k − q)| ≤ 1

Ld
|qΨ̂0(q)| · h.

The summation over q gives the bound h‖Ψ0‖D1 which is part of the cr–term.

What remains to be estimated is the quantity

1

L2d

∑
k,q:|k−q|≤p0

hk2

1 + hk2
· |qΨ̂0(q)| · |(k − q)Ψ̂0(k − q)|.

Similarly to the above, if we first restrict summation over q to |q| > p0, we may divest

of the factor hk2/(1 + hk2) and, as an upper bound, summing over (k − q) yields a

factor of ‖Ψ0‖D1 which is then multiplied by a factor of h from the sum over q. Thus

we arrive at another estimate of h‖Ψ0‖D1 which we add to the cr–term.

We are left with the case where |q| < p0 and |k − q| < p0. Here, for the k2 in the

numerator we write k2 = q2 + 2q · (k − q) + (k − q)2 giving us three terms to estimate
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the first of which is

1

L2d

∑
k,q:|q|,|k−q|≤p0

h

1 + hk2
· |q3Ψ̂0(q)| · |(k − q)Ψ̂0(k − q)|.

Now 1
1+hk2

< 1 and also 1 + hq2 ≤ 1 + a2 so the upshot is that the above term is

bounded above by

1

L2d
h(1 + a2)

∑
k,q

1

1 + hq2
· |q3Ψ̂0(q)| · |(k − q)Ψ̂0(k − q)|

where we have now relaxed the restriction on the range of summation. Summing over

k we acquire our first contribution to Cr, namely (1 + a2)‖Ψ0‖D1 .

The second term is the quantity

2

L2d

∑
k,q:|q|,|k−q|≤p0

h

1 + hk2
· |q2Ψ̂0(q)| · |(k − q)2Ψ̂0(k − q)|.

Here we can relax the restriction over the summation and use 1
1+hk2

< 1 to arrive at

the bound of 2h‖Ψ0‖2D2
which is another contribution to the cr–term. Our third term

is identical to the first with the roles of q and k− q switched and may be estimated by

the same procedure.

The analysis of s• follows a similar set of procedures. We will dispense with the

details and state the result:

Cs = (1 + a2) · ‖w0‖D1

and

cs = 2‖w0‖D1 + 2‖Ψ0‖D2‖w0‖D2 + ‖Ψ0‖D1‖w0‖D3 .

The claim is established. �

Thus so far, on the basis that p0 ≤ ah−
1
2 , we now have the r• and s• terms essentially

bounded by ‖hL−1
h Ψ0‖D3 . To bound the latter quantity we have:
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Claim A3. Either

‖hψ?‖D2 > (Cr + Cs) · ‖hL−1
h Ψ0‖D3

(where the difference may be considerable) or both ‖ψ?‖D2 and ‖L−1
h Ψ0‖D3 are bounded

above by constants depending only on D0.

Proof of Claim. We are to compare:

q4

1 + hq2
|Ψ̂0(q)| vs. (Cr + Cs)

|q3|
1 + hq2

|Ψ̂0(q)|; (59)

obviously if |q| ≥ (Cr +Cs) the terms contributing to ‖ψ?‖D2 are dominant and we are

done. Let us define q0 := 2(Cr + Cs) and write ‖ψ?‖D2 = a+ b where

a =
∑
|q|≤q0

q4

1 + hq2
|Ψ̂0(q)|, b =

∑
|q|>q0

q4

1 + hq2
|Ψ̂0(q)|

with a similar decomposition (|q| ≤ q0, |q| > q0) for (Cr +Cs) · ‖L−1
h Ψ0‖D3 denoted by

α and β. So, let us suppose a+ b ≤ α+ β. Since we have arranged b ≥ 2β this implies

that a ≤ α− β and hence α ≥ β and so

‖ψ?‖D2 ≤ 2α = 2(Cr + Cs)
∑
|q|≤q0

|q|3

1 + hq2
|Ψ̂0(q)| ≤ q2

0 · ‖Ψ0‖D2 .

I.e., ‖hψ?‖D2 is actually of order h. The same bound (and conclusion) holds for

‖L−1
h Ψ0‖D3 which (also) does not exceed 2α. �

With these results in hand, we can now establish:

Proposition 5.3 The D2–norms of Ψ0 and its successor Ψ1, acquired after one iter-

ation of the discretization, satisfy

‖Ψ1‖D2 − ‖Ψ0‖D2 ≤ b2h

where b2 > 0 depends only on the elements of D0.

We reiterate that the left hand side in the above display can be considerably negative.
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Proof. Since Ψ1 = Ψ0 + hψ, we certainly have ‖Ψ1‖D2 − ‖Ψ0‖D2 ≤ ‖hψ‖D2 . Next we

recall

hψ? = hL−1
h (∇2Ψ0), hψ̂?(k) = − hk2

1 + hk2
Ψ̂0(k), for all k.

It follows that if we write as described before hψ = hψ? + hψ•, then

|Ψ̂1(k)| ≤ |Ψ̂0(k)| ·
(

1− hk2

1 + hk2

)
+ |hψ̂•(k)| = |Ψ̂0(k)| − |hψ̂?(k)|+ |hψ̂•(k)|.

Multiplying by k2 and summing we see that

‖Ψ1‖D2 − ‖Ψ0‖D2 ≤ ‖hψ•‖D2 − ‖hψ?‖D2 .

It follows from the above display that in case ‖hψ•‖D2 is not of order h, then the proof of

the proposition amounts to establishing the statement that ‖hψ•‖D2 −‖hψ?‖D2 ≤ b2h.

We have

hψ• = hψ − hψ? = hr• + hs• + hL−1
h

[
∇2w0 − Ω0(Ψ0 + w0 − µ)

]
+ h2L−1

h

[
(∇ψ · ∇Ψ0 +∇Ψ0 · ∇wψ +∇2wψ)− E2(hψ)

]
.

There are three terms in the expression for hψ• which must be dealt with explicitly:

These are the r• and s•–terms as well as the term h2∇ψ ·∇Ψ0. All other terms can be

handled with straightforward methods. We shall be content with a couple of examples:

‖hL−1
h (∇2w0)‖D2 =

1

Ld

∑
k

hk2

1 + hk2
· k2|ŵ0(k)|

≤ h

Ld

∑
k

k4|Ŵ (k)| · |N̂0(k)| ≤ hv4e‖Ψ0‖D0

and

‖h2L−1
h (∇Ψ0 · ∇wψ)‖D2 =

h

L2d

∑
k

hk2

1 + hk2

∑
q

|qΨ̂0(q)| · |(k − q)ŵψ(k − q)|

≤ hv1‖Ψ0‖D1 · e‖Ψ0‖D0
1

h
E1(h‖ψ‖D0)

≤ hv1‖Ψ0‖D1 · e‖Ψ0‖D0
1

h
E1(hb0)
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(The quantity b0 is defined in the statement of Proposition 5.1, i.e., ‖ψ‖D0 ≤ b0.) The

result is that we may bound (the sum of) all these terms by an hÃ(h) with Ã bounded

and tending to some Ã(0) as h→ 0. This leaves – in addition to the r• and s•–terms

– the quantity h2(∇Ψ0 · ∇ψ) which we now estimate: Writing ψ = ψ? + ψ•, we have

(again using h|k|
1+hk2

≤ 1
2h

1/2)

h2‖L−1
h (∇Ψ0 · ∇ψ•)‖D2 =

1

L2d

∑
k,q

h2k2

1 + hk2
· |qψ̂•(q)| · |(k − q)Ψ̂0(k − q)|

≤ 1

L2d

1

2
h

3
2

∑
k,q

|ψ̂•(q)Ψ̂0(k − q)| ·
(
q2|k − q|+ (k − q)2|q|

)
≤ 1

2
h

1
2

(
‖hψ•‖D2‖Ψ0‖D1 + h

1
2 ‖hψ•‖

1
2
D2

b
1
2
0 ‖Ψ0‖D2

)
. (60)

In the last step we have used ‖ψ•‖D0 ≤ b0 which is admissible since in the derivation

in Proposition 5.1 of ‖ψ‖D0 ≤ b0 we estimated the absolute value of each successive

term the first of which (c.f., Eq. (48)) was exactly ψ?. Thus the bound derived in

Proposition 5.1 actually amounts to the stronger bound ‖ψ?‖D0 + ‖ψ•‖D0 ≤ b0. We

acquire an estimate similar to that in Eq. (60) for the ψ?–term (explicitly, Eq. (60)

with ψ? replacing ψ•).

We amalgamate our upper bound on ‖hψ•‖D2 :

‖hψ•‖D2 ≤ Ãh+ ‖hr•‖D2 + ‖hs•‖D2

+
1

2
h

1
2

(
‖hψ•‖D2‖Ψ0‖D1 + h

1
2 ‖hψ•‖

1
2
D2

b
1
2
0 ‖Ψ0‖D2

)
+

1

2
h

1
2

(
‖hψ?‖D2‖Ψ0‖D1 + h

1
2 ‖hψ?‖

1
2
D2

b
1
2
0 ‖Ψ0‖D2

)
. (61)

Let us discuss the term(s) in the last line of the above display: We emphasize that

the last two bracketed terms are identical under the exchange ‖ψ?‖D2 ↔ ‖ψ•‖D2 . If

the bracketed term on the last line (the ψ? terms) exceeds the corresponding bracketed

term just preceding (that have ψ? replaced by ψ•) then we would immediately conclude
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that ‖ψ•‖D2 ≤ ‖ψ?‖D2 and we would be done. Therefore let us assume that this is not

the case.

Moreover, if h
1
2 ‖hψ•‖

1
2
D2

b
1
2
0 ‖Ψ0‖D2 ≥ ‖hψ•‖D2‖Ψ0‖D1 , this would imply that ‖hψ•‖D2

is of order h, in which case it is no longer important whether or not it exceeds ‖hψ?‖D2 ,

so we may assume this is also not the case. Thus, there is no loss of generality if we

proceed under both (negative) assumptions replacing (as an upper bound) the two

bracketed terms in the above display by 2h
1
2 ‖hψ•‖D2‖Ψ0‖D1 . In this way we we arrive

at the tentative estimate

ah‖hψ•‖D2 := (1− 2h
1
2 ‖Ψ0‖D1) · ‖hψ•‖D2 ≤ ‖hr•‖D2 + ‖hs•‖D2 + Ãh. (62)

Next, we may assume that, as discussed in Claim A1, the quantity p0 does not exceed

ah−
1
2 since otherwise, automatically, ‖hr•‖D2 +‖hs•‖D2 is dominated by 1

2‖hψ?‖D2 and

the inequality in Eq. (62) becomes ‖hψ•‖D2 ≤
(
Ã+ 1

2‖Ψ0‖D2

)
a−1
h ·h (indeed, we recall

that hψ̂?(k) = hk2

1+hk2
Ψ̂0(k)) which is of the type we wanted. Thus assuming p0 ≤ ah−1/2

and using Claim A2, our tentative estimate becomes

ah‖hψ•‖D2 ≤ (Cr + Cs)‖hL−1
h Ψ0‖D3 +Ah

where A has been modified from Ã by the addition of (cr + cs).

The conclusion is now inevitable. From Claim A3 we have that if the first term on

the right of the previous display exceeds ‖hψ?‖D2 then both terms (and hence all terms)

are bounded by a D0–dependent constant times h; otherwise, this term is bounded by

‖hψ?‖D2 and we conclude that

‖hψ•‖D2 ≤ a−1
h (‖hψ?‖D2 +Ah)

and again we have an inequality of the type we wanted when ‖hψ?‖D2 is relatively

large.
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To summarize, so far we have the following results for one timestep of the iteration:

Corollary 5.4 Consider Eq. (25) with all elements of D0 finite. Then there is some

h0 = h0(D0) such that for all h < h0:

i) There is a classical (i.e., D2, which implies the usual C 2) solution N1 = eΨ1

which is bounded below;

ii) ‖Ψ1‖D1 − ‖Ψ0‖D1 and ‖N1 − N0‖∞ are bounded from above by a constant de-

pending only on the elements of D0 times h.

Proof. Most of this follows from the above. For i), the existence of a solution Ψ1 = N0+

hψ is given by Proposition 5.1 and the solution is classical by Proposition 5.3; the lower

bound on N1 certainly follows since ψ has bounded D0–norm by Proposition 5.1. As for

ii), we have by Propositions 5.1 and 5.3 and Cauchy–Schwarz that ‖Ψ1‖D1−‖Ψ0‖D1 ≤

‖hψ‖D1 ≤ b0b2h; finally, for the L∞–bound we have |N1 −N0| ≤ N0[ehb0 − 1].

Under the assumption that the discretization process persists for macroscopic times

(i.e., the order of h−1 iterations) we will show that the bounds derived so far also

allow us to establish the needed convergence to the continuum result of Theorem 3.8.

The questions which pertain to the long time survival of the iteration process will be

postponed till the next subsection.

Proof of Theorem 3.8, item (A). As before, we let Ψt denote the limiting quantity

which satisfies the appropriate version of Eq. (25)). We will first establish uniform

convergence in the D0–norm, which may be expressed via

lim
h→0

sup
t∈[0,T ]

‖Ψt −Ψ
[h]
t ‖D0 = 0. (63)

First, let hj denote a sequence tending to zero (always below hT ) where it may be

envisioned that in the above, the superior h → 0 limit is achieved. Let tj denote an
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integer (multiple of h) time closest to the time where the h = hj supremum in the

above display is to be found.

It follows from the weak convergence of Ψ
[h]
t to Ψt established in the proof of

Theorem 3.8 (in Section 3.4) that for all t and q,

Ψ̂
[h]
t (q) =

∫
TdL

Ψ
[h]
t (x)eiqx dx −→

∫
TdL

Ψt(x)eiqx dx = Ψ̂t(q),

i.e.,

Ψ̂
[h]
t (q)→ Ψ̂t(q).

Now the bound on ‖Ψ[h]
t ‖D2 from Proposition 5.3 is uniform in h for h sufficiently small,

and uniform in t for t ≤ T . This gives us a so–called tightness condition: Indeed, if∑
k |k|2|Ψ̂

[h]
t (k)| < C then we have that

∑
k>k0

|Ψ̂[h]
t (k)| ≤ C/k2

0 which can be made

arbitrarily small by choosing k0 sufficiently large. Then by the above convergence of

modes the truncated sum of differences
∑

k≤k0 |Ψ̂
[h]
t (k)−Ψ̂t(k)| tends to zero as h tends

to zero. We can therefore conclude that

lim sup
j→∞

‖Ψtj −Ψ
[hj ]
tj
‖D0 = 0.

Next we let t† = limj→∞ tj , and then the limit in Eq. (63) is seen to be zero by an

application of the triangle inequality:

lim
j→∞

‖Ψt† −Ψtj‖D0 = lim
j→∞

‖Ψt† −Ψ
[hj ]

t†
‖D0

+ lim
j→∞

‖Ψ[hj ]
tj
−Ψ

[hj ]

t†
‖D0 + lim

j→∞
‖Ψ[hj ]

tj
−Ψtj‖D0 ,

where the middle term is zero since from Corollary 5.4, ii) we have that the term of

interest is bounded by
[
tj−t†
hj

]
· b0hj (here [x] is the least integer so that [x] ≥ x).

Finally, since Proposition 5.3 gives uniform boundedness (in h, for h small and

t ≤ T ) of ‖Ψ[h]
t ‖D2 , together with the above uniform D0–convergence result, the strong
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D1–convergence follows from the Cauchy–Schwarz inequality:

‖Ψ[h]
t −Ψt‖D1 ≤ ‖Ψ

[h]
t −Ψt‖1/2D0

· ‖Ψ[h]
t −Ψt‖1/2D2

.

5.5 Viability of Iterations

For h sufficiently small, we may envision a few runs of the process. After one step, we

will have an updated version of D0 in which some of the parameters, i.e., ‖Ψ1‖D0 and

‖Ψ1‖D2 , have changed; we call these the mutable parameters. And, if h is still small

enough this will allow (even according to the bounds) further iterations of the process.

In any case if k iterations of the process are allowed, let us denote by D
[h]
t the current

values of the parameters where h ≤ (k − 1)h ≤ t < kh:

D
[h]
t = {‖Ψk−1‖D0 , ‖Ψk−1‖D2 , v0, . . . , v4, ‖W‖D2}.

(This definition is consistent with denoting the original D we started with by D0, as we

have done in the previous subsections.) Here, let us introduce the notion of viability :

Definition 5.5. Let D
[h]
t be defined as above and h considered fixed. Then the process

is deemed to be viable for h if, on the basis of the bounds derived in the preceding two

subsections (not necessarily the actual values)

(a) D
[h]
t permits an iteration of the process; further, still on the basis of these

estimates for elements of D
[h]
t+h (i.e., considering the estimates for D

[h]
t to be playing

the role of D0 and used to estimate the elements of D
[h]
t+h)

(b) an additional iteration is possible.

It is noted that by Corollary 5.4, given any D with finite elements, the process is

viable if h is sufficiently small.However, this is far from what is needed since we must
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consider many iterations of the process at fixed h. The following represents a midway

goal of this appendix:

Proposition 5.6 Consider the setup encoded in Eq. (25) as has been described. Then

there exists a strictly positive t = t(D0) such that for all h sufficiently small, the

process is viable up till time t, i.e., the elements of D
[h]
t allow for continued iteration

of the process.

It is reemphasized that whenever h is small enough so that the above statement

holds, the conclusion pertains to the order of th−1 iterations of the process.

Proof. Let H0 > 0 denote a number which is larger than all the mutable parameters

in D0 – and indeed might be regarded as considerably larger. After an iteration of the

process, assuming h is small enough to allow such, the mutable parameters will in all

likelihood have changed. So let us thus define H(H,h) so that hH is the maximum

upward change of these mutable parameters, according to the bounds derived in Propo-

sitions 5.1 and 5.3, were they all equal to H in the first place. Due to monotonicity

based on inefficiency, it is clear that if in D
[h]
t all mutable parameters are less than or

equal to H, then in D
[h]
t+h none of them exceeds H +hH(H,h). Moreover, again by the

above–mentioned propositions, it is clear that the h→ 0 limit of H(H,h) is finite, i.e.,

H(H,h) may be considered to be uniformly bounded in h.

As an explicit example, suppose it were the case that ‖Ψ0‖D2 > ‖Ψ0‖D0 , then

we set H0 = ‖Ψ0‖D2 and perform the estimates in Propositions 5.1 and 5.3 with H0

playing the role of both ‖Ψ0‖D0 and ‖Ψ0‖D2 , yielding bounds H0 + hH[0]
0 , H0 + hH[2]

0 ,

respectively. Let us suppose e.g., that H[0]
0 > H[2]

0 , then we would set H(H0, h) = H[0]
0 .

In this way we arrive at H1 = H0 + hH(H0, h).
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Now consider H(2H0, ·) and let h†2 be small enough so that for all h ≤ h†2, pro-

vided all mutable parameters in D do not exceed 2H0, the process is still viable. I.e.,

informally, if 2H0 is “small enough for h†2, then so is 2H0 + h†2H(2H0, h
†
2)”. Finally, let

H†2 = sup
h<h†2

H(2H0, h).

The following is now clear: Starting at D0 – with all mutable parameters less than

H0, and h ≤ h†2, we may certainly iterate the above described process to yield H2, H3,

etc., until – according to the derived bounds – one of our mutable parameters reach

2H, i.e., some m such that Hm ≤ 2H,Hm+1 > 2H. This implies there will be at

least m permitted iterations of the process where m is the largest integer smaller than

h−1H/H†2, i.e., t & H/H†2.

It might be envisioned that going to smaller and smaller time steps will allow for

indefinite extension of the simulation times. While this is true, and the subject of our

next proposition, this cannot be proved on the basis of the bounds on the process that

have so far been derived. Indeed, on adhering to the above, in the h → 0 limit we

would anticipate the bound on H (which is now considered to be a function of time)

provided by

dH

dt
= H(H, 0).

However, such an equation may very well diverge in finite time as indeed would a

“more accurate” equation/bound involving all mutable parameters separately. The

needed additional ingredient is provided by the convergence to and the properties of

the limiting Eq. (11).

Since both h and times will be varying in the next proposition, we shall indicate the

former by bracketed superscripts and the latter by subscripts indicating macroscopic
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times. Thus, e.g., Ψ
[h]
t denotes the (piecewise constant) function “Ψ” obtained after k

iterations of the process with time step h for time t if we have hk ≤ t < h(k + 1).

Proposition 5.7 Let T > 0 be arbitrary. Then there exists hT > 0 such that for all

h ≤ hT , the process described by Eq. (25) survives at least up till time T , i.e.,

sup
0<h<hT

max
t∈[0,T ]

‖D[h]
t ‖∞ <∞.

Thus we may perform the order of h−1T iterations.

Proof. The proof relies on the fact that the continuous time equation, i.e., Eq. (8)

lasts indefinitely and enjoys smoothing properties. In particular, at positive times the

functions Ψ etc., have their nth derivatives in L1(TdL) for all n ([8]), hence all the

Dk–norms are finite. Of course for the purposes of this proof, we are only concerned

with the D0 through D2 norms and their roles as elements of D.

Consider T > 0, our fixed macroscopic time. Let 0 < t0 < t(D0) (as in Proposition

5.6) and t1 > T . We define α to be the supremum of the continuous time versions of

the relevant D0, D1 and D2 norms. If the statement of the proposition were false for

the time T , then there exists a sequence hk → 0 and a sequence of times (tk) ⊆ [0, T ]

such that limk→∞ ‖D
[hk]
tk
‖∞ =∞. Let H > 2α be a quantity like that employed in the

proof of Proposition 5.6 and let us define the times τ †H(h) and τ ††2H(h):

• τ ††2H(h) is such that at this time, the maximal element of the appropriate D, i.e.,

D
[h]

τ††2H(h)
, is less than 2H, but one time step later, some element of D

[h]

τ††2H(h)+h
exceeds

2H for the first time in the process;

• τ †H(h) is such that at this time, the maximal element of D
[h]

τ†H(h)
exceeds H,

however one time step prior, all the mutable elements of D
[h]

τ†H−h
were below H.

Altogether we certainly have τ †H(h) ≤ τ ††2H(h) + h; it can further be demonstrated
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that in fact τ ††2H(h) − τ †H(h) is of order unity: Returning to the context of the proof

of Proposition 5.6, let us say that we have h sufficiently small so that uniformly in h

H(H,h) ≤ H1 and H(2H,h) ≤ H2 (so that H1 ≤ H2 by monotonicity of the function

H(H,h) in H). Now we certainly have ‖D
τ†H
‖∞ ≤ H+hH1 and ‖D

τ††2H
‖∞ ≥ 2H−hH2.

Thus if we had chosen h smaller (if necessary) so that 3hH2 � H then ‖D
τ†H(h)+h

‖∞ ≤

H + hH1 + hH(H + hH1, h)� 2H − hH2 and so the conclusion follows.

The assumed falsehood of the statement of this proposition implies that these times

exist, are well defined and satisfy

lim sup
h→0

τ ††2H ≤ T.

Thus we have a family of compact intervals [τ †H (h), τ ††2H(h)] which, as established above,

are non–empty and of size uniformly bounded below. Let us start by restricting to

a subsequence of h’s – which we will not adorn with further labels – in which the

intersection of these subsequent intervals contains an interval to which we will restrict

our attention. Now, it is emphasized, the totality of all iterations in the subsequence

under consideration is countable.

In the intersection of the above mentioned regions, the iteration process is certainly

viable and hence the convergence result of Theorem 3.8, item (A) may be applied. I.e.,

here we have strong convergence to the continuum equation:

lim
h→0

sup
t∈[0,T ]

‖Ψt −Ψ
[h]
t ‖D0 = 0 and lim

h→0
sup
t∈[0,T ]

‖Ψt −Ψ
[h]
t ‖D1 = 0.

Therefore ‖Ψ[h]
t ‖D0 and ‖Ψ[h]

t ‖D1 converge (along any tj → t, hj → 0 subsequence) to

their continuum values and so, further restricting the subsequence of h’s if necessary,

‖Ψ[h]
t ‖D0 , ‖Ψ[h]

t ‖D1 < 2α for all t and h. However, since something in the D
[h]
t ’s must

be greater than H it is evident that we have ‖Ψ[h]
t ‖D2 > H. This implies that these
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objects are not converging strongly in D2.

Let us summarize the strategy for the remainder of this proof. We will show that

the purported circumstances imply that among the iterative corrections, the dominant

term, by far, is ψ? (c.f., Eq. (55) and Eq. (56)). Thence Ψ
[h]
t+h is given, in essence, by

(Ψ
[h]
t+h)? which, we remind the reader, enjoys a reduction in all k 6= 0 Fourier modes.

So, in particular, we will show ‖Ψ[h]
t+h‖D2 < ‖Ψ

[h]
t ‖D2 , indicating that the time τ ††2H(h) is

never reached, effecting a contradiction. Much of reasoning here will be similar to the

estimations in Proposition 5.3 so we shall be succinct. In what follows, we shall make

statements which, properly speaking hold for all but a finite number of h’s and time

intervals. We shall abbreviate by saying “for all”, automatically going to subsequences

if necessary.

Our first claim is that ‖L−1
h (∇2Ψ

[h]
t )‖D2 (corresponding to the ψ?–term, c.f., Eq. (55))

is, in essence, indefinitely large. To this end, let Q denote a fixed large number the

necessary size of which will be specified eventually. If, we suppose, that for infinitely

many h’s, the sum for ‖Ψ[h]
t ‖D2 truncated at Q satisfies

∑
|q|≤Q

|q2Ψ̂
[h]
t (q)| > 1

2
H

then since H > 2α this would imply that any limit of Ψ
[h]
t would have D2–norm in

excess of α. Thus we have, without loss of generality it must be the “tail” which

diverges, i.e., for all h and t,

∑
|q|>Q

|q2Ψ̂
[h]
t (q)| ≥ 1

2
H. (64)

Now for all h sufficiently small and Q fixed, it is clear that k2/[1 + hk2] > (1
2Q)2

whenever k > Q and thus ‖L−1
h (∇2Ψ

[h]
t )‖D2 & Q2H: Indeed,

‖L−1
h (∇2Ψ

[h]
t )‖D2 ≥

∑
|q|>Q

q2

1 + hq2
· |q2Ψ̂

[h]
t (q)| ≥ 1

8
Q2H. (65)
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This is deemed to be larger than (the bounds on) all peripheral terms which consist

of all terms in ψ• except the r• and s• terms and also the cr and cs terms from

Claim A2; all these terms are at most multiples of H. The only possible difficulties

concern the terms r• and s•. According to one scenario, namely p0 > ah−
1
2 (c.f., Claim

A1 and noting the factor of 2) these terms could only account for half of the term

‖L−1
h (∇2Ψ

[h]
t )‖D2 and so (sending Q2 to 2Q2 if necessary) the remainder is more than

sufficient for all else.

Otherwise, when p0 ≤ ah−
1
2 it is recalled (see Claim A2) the added r• and s• terms

have D2–norms bounded by the cs and cr terms plus the term

(Cr + Cs)
∑
q

1

1 + hq2
· |q3Ψ̂

[h]
t (q)|.

It remains to bound the terms in the last display. As for the range |q| ≤ q0 (where we

recall from the proof of Claim A3 that q0 = 2(Cr+Cs)) we may bound the corresponding

contribution of the above by 4(Cr + Cs)
3‖Ψ[h]

t ‖D1 . By proper choice of Q, this can be

made to be negligibly small compared to Q2H. In the range q0 < |q| ≤ Q, the terms

contributing to ‖L−1
h (∇2Ψ

[h]
t )‖D2 dominate their counterparts in the above display and

so we may ignore these differing contributions.

This leaves us with |q| > Q where it may be asserted that

q4 − (Cr + Cs)q
3

1 + hq2
≥ q2

[
(
1

2
Q)2 − (Cr + Cs)Q

]
.

The previous expression comes directly from Eq. (59): By Eq. (65), it cannot be the

case that everything is bounded by multiples of H, so in the context of Claim A3, we

are in the case where ‖hψ?‖D2 > (Cr + C2)‖hL−1
h Ψ0‖D3 . This leaves us an overall

excess at least as large as [
(
1

2
Q)2 − (Cr + Cs)Q

]
× 1

2
H
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(the last expression comes from the previous display and Eq. (64)). It is thus seen that

forQ chosen to be large enough, the increment for ‖Ψ[h]
t ‖D2 on each step of the iteration

is negative (we again remind the reader of Eq. (56) and the discussions immediately

following) and so it is indeed the case that ‖ψ[h]
t+h‖D2 < ‖ψ

[h]
t ‖D2 .

We can now extend Corollary 5.4 to arbitrary macroscopic times:

Corollary 5.8 Consider Eq. (25) with all elements of D0 finite and let T > 0. Then

there is some hT = hT (D0) such that for all h < hT and t < T :

i) There is a classical solution N
[h]
t = eΨ

[h]
t which is bounded below;

ii) ‖Ψt+h −Ψt‖D0 ≤ b0h;

iii) ‖N [h]
t+h −Nt‖∞ and ‖Ψ[h]

t+h‖D1 − ‖Ψ
[h]
t ‖D1 are bounded from above by a constant

depending only on the elements of Dt times h.

In the above, the notation N
[h]
t etc., is as in the proof of Theorem 3.8.

Proof. With the results of Proposition 5.7 etc., in hand, the proof of i) and ii) follow

mutatis mutantis from the proof of Corollary 5.4 whereas item iii) is simply Proposition

5.1 stated for arbitrary t < T .

6 Appendix B

In this appendix – which is not essential for this work but is requisite for completeness

– we present the basic properties of the distance function on B × B (particularly that

it actually is a distance). Our result, concerning the realization of the minimization

program defining the distance, is in the spirit of [3]:

Proposition 6.1 For N0, N1 ∈ B, consider D2(N0, N1) as in Eq. (17). Then the
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infimum in this equation is achieved by minimizing among velocity fields that are derived

from potentials.

Proof. Let Nt denote a path in B from N0 to N1 as described in Eq. (17) which we

suppose is driven by fields (V,Q) ∈ V (N0,N1):

∂Nt

∂t
+∇ · (NtV ) = −ΩNtQ.

Now let φ denote a velocity potential which also produces the path Nt (as in the

derivations following Eq. (17)):

∂Nt

∂t
= ∇ · (Nt∇φ)− ΩNtφ.

Multiplying both of the above by −φ and integrating by parts, we have, for a.e. t,

〈〈(−∇φ, φ), (−∇φ, φ)〉〉Nt = 〈〈(−∇φ, φ), (V,Q)〉〉Nt . (66)

I.e., the difference between (V,Q) and (−∇φ, φ) is orthogonal to (−∇φ, φ). Now

〈〈(V +∇φ,Q− φ), (V +∇φ,Q− φ)〉〉Nt ≥ 0.

Expanding the above and using Eq. (66), we conclude

〈〈(V,Q), (V,Q)〉〉Nt ≥ 〈〈(−∇φ, φ), (−∇φ, φ)〉〉Nt .

Thence, at least from the perspective of a minimization program, we may restrict

attention to gradient fields.

Here we establish the so–called indiscernible property of D(·, ·) as stated below. In

what follows, we will actually make use of the finite range assumption on W (·).

Proposition 6.2 Let N0, N1 ∈ B with N0 6= N1. Then

D2(N0, N1) 6= 0.
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Proof. Assuming D2(N0, N1) = 0, let N
(k)
t be a minimizing sequence of paths in B

connecting N0 and N1. We denote by Ψ
(k)
t the associated driving potentials. By our

assumption, it is the case that εk(t) defined by

ε2
k(t) := −

∫
TdL

Ψ
(k)
t

∂N
(k)
t

∂t
dx = 〈〈∇Ψ

(k)
t ,∇Ψ

(k)
t 〉〉Nt (67)

satisfies

0 = lim
k→∞

∫ 1

0
ε2
k(t) dt.

The idea is then to estimate the mass evolution of N
(k)
t using the equation to eventually

arrive at the conclusion that N0 = N1.

We start by defining a “localized” mass of N . For x0 ∈ TdL, let Ba(x0) denote the

ball of radius a centered at x0 where a denotes the interaction radius of W . Let ϕ(x)

denote any positive C 2 function which is identically one on Ba(0) and decreases to zero

outside, specifically in B2a(0) \ Ba(0). For brevity, we use ϕx0(x) := ϕ(x − x0). For

N ∈ B we will write

pN (x0) :=

∫
TdL
ϕx0N dx

which, it is noted, is an upper bound on the N–measure of Ba(x0) (and a lower bound

on the N–measure of B2a(x0)). Moreover, it is noted that pN (x) is a continuous

function of x.

For x ∈ TdL, t ∈ [0, 1] and k an integer let us abbreviate p
N

(k)
t

(x) by pt,k(x). It is

observed that (for fixed k) pt,k(x) is a continuous function on [0, 1] × TdL. Indeed, for

fixed x0 we can estimate the evolution of pt,k(x0). We have

− d

dt
pt,k(x0) = 〈〈∇Ψ

(k)
t ,∇ϕx0〉〉N(k)

t

so that by Eq. (67) and Cauchy–Schwarz,∣∣∣∣ ddtpt,k(x0)

∣∣∣∣ ≤ εk(t)〈〈∇ϕx0 ,∇ϕx0〉〉 12N(k)
t

(68)
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for a.e. t. We now examine

〈〈∇ϕx0 ,∇ϕx0〉〉N(k)
t

=

∫
TdL
N

(k)
t |∇ϕx0 |2 + Ω

N
(k)
t
ϕ2
x0 dx.

As for the gradient term, let us write |∇ϕ|2 ≤ gϕϕ for some constant gϕ and so

∫
TdL
N

(k)
t |∇ϕx0 |2 dx ≤ gϕ · pt,k.

For the second term, we first claim that

ΩN ≤ e
1
2
|µ−wN | · 1

2
(1 +N).

Indeed, writing ΩN = N
1
2 sinh(1

2ΦN )/1
2ΦN ≤ N

1
2 cosh 1

2ΦN , the result follows imme-

diately. Also, for N fixed, we have

|wN (x0)| ≤ w0 · pN (x0),

with w0 being the C 0–norm of W . Indeed,

|wN (x0)| =

∣∣∣∣∣
∫
TdL
W (x0 − y)Nt(y) dy

∣∣∣∣∣
≤
∫
TdL
|W (x0 − y)|Nt(y) dy ≤ w0Nt [Ba(x0)]

and we conclude by recalling that pN (x0) is an upper bound of Nt [Ba(x0)]. The

previous two observations then yield the preliminary estimate∫
TdL

Ω
N

(k)
t
ϕ2
x0 dx ≤

1

2

∫
TdL

e
1
2
|µ−wN | · (1 +N

(k)
t )ϕ2

x0 dx

≤ 1

2
e

1
2
µ

∫
TdL

e
1
2
w0pt,k · (1 +N

(k)
t )ϕ2

x0 dx.

Now, consider I0 defined by

I0 := max
x∈TdL

p0,k ≡ max
x∈TdL

∫
TdL
N0ϕx dx

which is manifestly independent of k. It is clear that for any given x if we define

t]k(x) := sup{t ∈ [0, 1] | pk,t(x) < 2I0}
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then t]k(x) > 0 (indeed, we have the above explicit bound on | ddtpt,k|). Moreover, it can

easily be established using the continuity of pk,·(·) that

t[k := inf
x∈TdL

t]k(x)

is strictly positive. But a priori t[k is not necessarily uniformly positive in k; notwith-

standing we will show, under the hypothesis D2(N0, N1) = 0, that for all k sufficiently

large, t[k ≡ 1.

Indeed, provided t < t[k, we may estimate the final term in the estimate prior to

the definition of I0 as follows:

∫
TdL

Ω
N

(k)
t
ϕ2
x0 dx ≤

1

2
e

1
2
|µ|+w0I0

∫
TdL

(1 +N
(k)
t )ϕ2

x0 dx ≤ c1ec2I0(c3 + I0) (69)

for finite constants c1 . . . c3 which do not depend on k or t. So, recalling Eq. (68), we

may write, for t < t[k,

pk,t(x0) ≤ pk,0(x0) + [c4I0 + c1ec2I0(c3 + I0)]
1
2 ·
∫ t

0
εk(s) ds,

with c4 similar to the above c’s corresponding to the |∇ϕx0 |2 term. It is also noted

that the first term on the right is independent of k and bounded by I0. Next let γk be

defined by [
c4I0 + c1ec2I0(c3 + I0)

] 1
2 ·
∫ 1

0
εk(t)dt := γkI0

where it is noted that the upper limit of the integration is t = 1. We have, for all k

sufficiently large that γk < 1 (since limk→∞
∫ 1

0 ε
2
k(t) → 0) and we have at t = t[k that

for any x,

pk,t[k
≤ I0(1 + γk) < 2I0

which necessitates t[k = 1.
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We note from Eq. (69) that ΩNt,k is bounded by 1
2e

1
2
|µ|ew0I0(1 +Nt,k), i.e., for any

positive (and, e.g., C 2) function f ,

∫
TdL

ΩNt,kf dx ≤
1

2
e

1
2
|µ|ew0I0

∫
TdL

(1 +Nt,k)f dx.

In particular, with f ≡ 1 we find that the total mass Mt,k satisfies the differential

inequality

dMt,k

dt
=

∫
TdL

ΩNtΨt dx ≤
1√
2

e
1
4
|µ|e

1
2
w0I0

[
Ld + Mt,k

] 1
2 · εk(t).

Since t[k = 1, certainly pt,k(x) < 2I0, so we have that e.g., Mt,k ≤ 2 Ld

|Ba(0)| · 2I0.

Therefore, defining ϑk :=
∫ 1

0 εk(t) dt ∝ γk (and so ϑk → 0 as k →∞) we learn that

Mt,k ≤M0 + c · ϑk, (70)

where c is another constant depending on N0, the total volume and other particulars

but is independent of k and t.

The proof is now easily finished. Let η denote any C 2 function. Then for any k,

∫
TdL

(N0 −N1)η dx =

∫ 1

0
〈〈∇Ψk,t,∇η〉〉Nt,k dt.

The right hand side can easily be bounded:∫ 1

0
〈〈∇Ψk,t,∇η〉〉Nt,k dt =

∫
TdL

(∇Ψt · ∇η)Nt +

∫
ΩNtΨtη dxdt

≤ ‖η‖
1
2

C 1M
1
2
t,k · εk(t) + ‖η‖C 0

[
Ld + Mt,k

] 1
2 · εk(t).

Eq. (70) gives the necessary bound for Mt,k and so letting k →∞, we learn
∫
η dN0 =∫

η dN1 which, since η is arbitrary, establishes N0 = N1

Theorem 6.3 The function D(·, ·) defines a distance on B.
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Proof. Let N0, N1 ∈ B. To help with the abbreviation of the forthcoming, let us name

by E the functional whose infimum produces D(N0, N1). By Proposition 6.1 we may

regard potentials as the arguments of this functional:

E2(Q) = E2
N0,N1

(Q) =

∫ 1

0
〈〈∇Q,∇Q〉〉Nt dt =

∫ 1

0

∫
TdL
Nt|∇Q|2 + ΩNtQ

2 dxdt

where it is noted but notationally suppressed that −∇Q ∈ V (N0, N1) (where V is as

in Eq. (17)). We may also make the trivial addition of allowing the potential to achieve

N1 at times T other than t = 1 in which case the functional becomes

E2(Q) = T

∫ T

0
〈〈∇Q,∇Q〉〉Nt dt.

Beyond the indiscernible property established above, we must show that D(N0, N1) =

D(N1, N0) and establish the triangle inequality. The first follows immediately from

“time reversal symmetry”; e.g., on [0, 1], t′ = 1−t, K(t′) = −Q(1−t′) gives E2
N0,N1

(Q) =

E2
N1,N0

(K) and the result follows.

As for the triangle inequality, we shall be as succinct as possible since the result

follows a transcription of the standard derivation from Riemannian geometry. When

the time interval is [0, T ], we define E(Q) by taking the square root of the integrand in

the definition of E2(Q):

E(Q) =

∫ T

0

√
〈〈∇Q,∇Q〉〉Nt dt.

We denote the corresponding minimized object by D(N0, N1). It is noted that E(Q) is

completely invariant under the full set of time changes: If ϑ(τ) = dt(τ)
dτ and

t→ τ(t), Q(t)→ K(τ) = ϑ(τ) ·Q(t(τ)),

then E(Q) = E(K) with K driving N0 to N1 on the interval [0, τ(T )].
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By convexity we have E2(Q) ≥ E2(Q) and so D2(N0, N1) ≥ D2(N0, N1). On the

other hand, defining

Et :=

∫ t

0
〈〈∇Q,∇Q〉〉

1
2
Nt′

dt′, t ≤ T,

and reparameterizing with

τ = τ(t) = Et, K(τ) =

[(
dEt
dt

)−1

(t(τ))

]
·Q(t(τ)),

it is seen that in the new variables, all integrands are identically one and so we have

E2(Q) = E2(K) = E(K)

∫ ET

0
dτ = τ(T )

∫ τ(T )

0
〈〈∇K,∇K〉〉Nτ dτ = E2(K).

Taking the infimum over K’s (or Q’s) we arrive at D(N0, N1) = D(N0, N1). The

triangle inequality is immediate since given N0, N1, N2 ∈ B we can attempt to minimize

EN0,N2
(·) by considering paths which visit N1 on the way to N2 and so we conclude

that D(N0, N2) ≤ D(N0, N1) + D(N1, N2).
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